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Abstract

A key assumption in Mendelian randomisation is that the relationship be-

tween the genetic instruments and the outcome is fully mediated by the ex-

posure, known as the exclusion restriction assumption. However, in

epidemiological studies, the exposure is often a coarsened approximation to

some latent continuous trait. For example, latent liability to schizophrenia can

be thought of as underlying the binary diagnosis measure. Genetically driven

variation in the outcome can exist within categories of the exposure mea-

surement, thus violating this assumption. We propose a framework to clarify

this violation, deriving a simple expression for the resulting bias and showing

that it may inflate or deflate effect estimates but will not reverse their sign. We

then characterise a set of assumptions and a straight‐forward method for es-

timating the effect of SD increases in the latent exposure. Our method relies on

a sensitivity parameter which can be interpreted as the genetic variance of the

latent exposure. We show that this method can be applied in both the one‐
sample and two‐sample settings. We conclude by demonstrating our method

in an applied example and reanalysing two papers which are likely to suffer

from this type of bias, allowing meaningful interpretation of their effect sizes.
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1 | INTRODUCTION

Mendelian randomisation proposes to use genetic var-
iants that alter, or mirror the biological effects of, mod-
ifiable exposures to study the causal effects of such
exposures on downstream outcomes. The principle un-
derlying Mendelian randomisation is that genetic var-
iants are randomly passed from parents to offspring at

conception, resulting in a plausibly unconfounded source
of variation in the exposures with which they are asso-
ciated. For Mendelian randomisation estimates to inform
policies or clinical practices, we must additionally as-
sume that genetic and environmental modifiers of the
exposure produce similar effects on the outcome (Davey
Smith & Ebrahim, 2003). For example, Mendelian ran-
domisation studies of pharmaceutical exposures typically
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use genetic variants that code for potential drug targets,
assuming that similar effects would be observed if those
targets were altered therapeutically (Plump & Davey
Smith, 2019).

One of the crucial assumptions underlying the Mende-
lian randomisation approach is that the relationship between
the genetic instruments and the outcome is fully mediated
by the exposure, known as the exclusion restriction as-
sumption. However, it is important to draw a distinction
between the true exposure experienced by an individual and
our attempt at measuring it. For practical purposes, we are
often restricted to coarsened approximations which do not
fully encapsulate the mechanism by which the true exposure
of interest affects the outcome. Consistent with existing ter-
minology, we define an exposure measurement as coarsened
if it is a discrete measure approximating a continuous latent
exposure (Marshall, 2016).

In the Mendelian randomisation context, coarsened ex-
posures can violate the exclusion restriction assumption. If
the genetic instruments are acting on a latent exposure, such
as body mass index (BMI), but the measured exposure is a
discretisation of it, such as obesity status, then there can exist
genetically driven variation in the true exposure within ca-
tegories of the measured exposure. We could imagine that
counterfactually altering some BMI‐raising single‐nucleotide
polymorphism (SNP) in an individual could result in a
change in their BMI without necessarily changing their
obesity status. This can be viewed a form of measurement
error which opens up potential pathways from the genetic
instruments to the outcome that do not pass through the
exposure measure, thus violating the exclusion restriction
assumption.

For example, Richardson et al. (2020) attempt to se-
parate the effects of early and later life adiposity on dis-
ease risk. The adiposity variable is a three‐category self‐
report measure (“thinner,” “plumper,” and “about aver-
age”). It is reasonable to conceptualise a continuous
measure of body mass (e.g., BMI) underlying this coar-
sened categorical measure, such that genetic variation in
this latent continuous measure could occur within cate-
gories of the self‐report variable. We later reanalyse
Richardson et al. (2020) in Box 2 using the approach
proposed in this paper. Another example is Richmond
et al. (2019), who apply Mendelian randomisation to
investigate the effect of sleep traits (e.g., morning pre-
ference, sleep duration) on breast cancer risk, finding
large causal effects of several traits. These traits are ca-
tegorical measures, for example, morning preference is
measured in six categories and sleep duration is split into
several groups. It is reasonable to conceptualise the true
exposures on which the genetic variants are acting as
latent continuous sleep traits and preferences, for which
the measured exposures are discrete markers.

An important class of latent exposures we consider in
this paper is disease liabilities, for which binary disease di-
agnosis or case status is the typical exposure measurement.
There are an increasing number of Mendelian randomisa-
tion studies investigating the effects of complex diseases such
as asthma, schizophrenia and attention deficit hyperactivity
disorder on various outcomes (Lawn et al., 2019; Martins‐
Silva et al., 2019; Pasman et al., 2018; Sun et al., 2019).
Complex diseases which result from the interaction of en-
vironment and multiple genetic variants are likely to affect
outcomes of interest through pathways other than diagnosis,
for example, severity of subclinical symptoms. Since genetic
instruments are, in turn, likely to influence the manifestation
or severity of the underlying symptoms, rather than diag-
nosis alone, this represents a potential violation of the ex-
clusion restriction.

This specific violation of the exclusion restriction as-
sumption has been raised before in both the economics and
political science literatures (Angrist & Imbens, 1995;
Marshall, 2016). It has also been raised briefly in the Men-
delian randomisation context in Burgess and Labrecque
(2018), who discuss interpretation of estimates with binary
exposures. The authors recommend that findings be framed
in terms of this latent exposure but note that the estimates
themselves have no meaningful causal interpretation. How-
ever, it remains to explore in more detail how this bias may
distort estimates and clarify how to appropriately frame es-
timates in terms of the latent exposure, which will depend
on the unobservable relationship between the latent ex-
posure and its coarsened measurement.

We attempt to provide these clarifications in this paper.
In particular, we derive an expression for the bias and in-
troduce a clear set of identifying assumptions under which
one can estimate the causal effect of the latent exposure. We
hope to allow researchers to decide whether these assump-
tions are plausible in the context of their study. In Section 2,
we outline our technical framework, which assumes a linear
single threshold model for the relationship between the la-
tent exposure and its measurement. That is, we assume that
values of the coarsened exposure are determined by whether
the latent exposure is above or below some threshold, which
could be individual‐specific. For example, an individual is
classified as obese if their BMI is above 30 and not obese
otherwise. This framework also contains the Falconer (1965)
liability‐threshold model, which assumes that a disease oc-
curs in an individual, or is sufficiently pronounced to be
diagnosed, if a build‐up of underlying liability crosses some
threshold. In this model, liability is assumed to capture all
genetic, shared and nonshared environmental risk factors.

In Section 3.1, we derive an expression for the bias
from the naive approach of using the coarsened mea-
sure as the exposure directly. Then, in Section 3.2, we
show that, if the latent exposure is standardised to
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have a SD of one, its causal effect can be identified if
we have auxiliary information on the genetic variance
of the latent exposure. This may be obtained from
genome wide association study (GWAS) or treated as a
sensitivity parameter and varied over a plausible range
of values. In the context of disease liabilities, we may
use the coefficient of determination developed by Lee
et al. (2012).

Section 4 provides some generalisations to this fra-
mework, in particular, allowing two‐sample estimation.
Section 5 provides a real data example by creating arti-
ficially dichotomised variables from the continuous BMI
measure in UK Biobank. Boxes 1 and 2 present re-
analyses of two papers which could be interpreted within
the framework proposed in this paper (Pasman
et al., 2018; Richardson et al., 2020). In sections A and B
of the appendix, we examine the bias that can emerge
when the assumptions of our framework are violated.

2 | FRAMEWORK

We begin by outlining some key notation. Suppose there
is a genetic instrument ∈Z , other genetic variants
(e.g., pleiotropic, weak) ∈X K and an environmental
risk factor ∈V , whereV is assumed to be continuously
distributed with mean zero. We also assume that Z , X
and V are mutually independent. We define
G μ αZ γ X= + + ′ as the genetic share of the latent ex-
posure and define the latent exposure itself as

L G V

μ αZ γ X V

= −

= + + − .′ (1)

It would be equally correct to define L G V= + , but the
formulation in (1) simplifies some later expressions. In
the Falconer framework described in Section 1, L would
represent liability to some disease. We are able to observe
a coarsened exposure characterised by a dichotomisation
of the latent exposure.

≥{D
L

L
=

1 if 0

0 if < 0
. (2)

If L is disease liability, then D would represent occur-
rence of the disease. In practice, we measure diagnosis of
the disease, which does not necessarily correspond to
occurrence due to under‐ or over‐diagnosis. We will treat
the two as equivalent throughout and discuss violations
of this equivalence in Section 6.

Equation (2) is the crucial assumption underlying our
approach; namely, that L is a linear index that relates to
D according to a single threshold. Section A of the ap-
pendix elaborates on the importance of this structural
assumption. Figure 3 illustrates our model within the

Box 1 Reanalysis of Pasman et al. (2018)

Pasman et al. (2018) performs a two‐sample
bidirectional Mendelian randomisation ana-
lysis of schizophrenia and cannabis use
(Burgess et al., 2015). The gene‐exposure as-
sociations for schizophrenia are pulled from a
GWAS of cases and controls and are reported
on the log‐odds scale (Schizophrenia Working
Group of the Psychiatric Genomics Con-
sortium, 2015). While this avoids the problem
of using the dichotomous diagnosis variable as
the exposure (as discussed in Section 1). it
means that the resulting estimates are inter-
preted as unit increases in the log‐odds, which
are scaled by the unobserved parameter σV .
The authors report an odds ratio (OR) of 1.16
(95% confidence interval [95% CI] = 1.06–1.27)
for the effect of genetic liability to schizo-
phrenia. While we can infer the direction of
the effect from this estimate, we cannot draw
any conclusions about the magnitude.
We apply the two‐sample generalisation of
Section 4.4. One of the strengths of this
generalisation is that we do not need to
re‐estimate the original inverse‐variance
weighted Mendelian randomisation estimates
ourselves. In addition to the estimates
reported in the original paper, we need only
an estimate of σG*, which can be computed
from summary data from the schizophrenia
GWAS, and some plausible choices for the
sensitivity parameter θ2. The schizophrenia
GWAS reports that their genome‐wide sig-
nificant loci explain roughly 3.4% of the
variation in schizophrenia liability using the
Lee et al. (2012) coefficient of determination.
Using this estimate as a baseline, we select
three choices for θ2: 0.02, 0.034, and 0.05.
Our findings are consistent with a modest
positive effect of schizophrenia liability on the
odds of cannabis use. As shown in Figure 1, a
one SD increase in schizophrenia liability
corresponds to a 1.15–1.26 increase in the
odds of cannabis use, with 95% CI range of
1.10–1.44. It is important not to directly
compare these estimates with the original es-
timates: the two are not on the same scale. We
must interpret the estimates of Figure 1 in
terms of SD increases in schizophrenia
liability.
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Falconer framework. There is a distribution of disease
liabilities and the disease occurs at the right tail of this
distribution. The size of the grey region represents the
prevalence of the disease in the population.

We also have an observed outcome ∈Y . For ease of
exposition, we restrict ourselves to a simple linear
structural equation model

Y βL ε= + (3)

which is implicitly conditional on covariates, where ε can
be correlated with both V and X . However, this

framework can accommodate more general exposure‐
outcome relationships of the form Y f L ε= ( ) + , provided

∣E f L Z z[ ( ) = ] is differentiable with respect to z. We
make the standard instrumental variable assumptions,
namely, that ≠α 0 and Z is independent of ε conditional
on covariates. The model (3) implicitly captures the as-
sumption described in Section 1 that genetic and en-
vironmental modifiers of the exposure produce equivalent
effects on the outcome. In this setting, the marginal effect
(in absolute value) of both G and V is β. Figure 4 sum-
marises this model in a directed acyclic graph. We can see
that the exclusion restriction is violated since there exists a
path from the latent exposure L to Y which does not pass
through the measured exposure D. The structural Equa-
tion (3) assumes no effect of D itself. For a disease such as
schizophrenia, liability could have a harmful effect on the
outcome but being diagnosed will usually lead to receiving
treatment and thus could have a protective effect. We
cannot separately identify the two effects in this setting,
although possibilities for doing so are discussed in
Section 4.2. When D is believed to have a distinct effect on
the outcome, we may instead identify the total effect of
liability on the outcome; that is, the direct effect β and the
indirect effect through D.

The structural assumptions made in this section can
be summarised as follows:

Box 2 Reanalysis of Richardson et al. (2020)

Richardson et al. (2020) performs two‐sample Mendelian randomisation analysis of child and adult BMI on risk of
several diseases: coronary artery disease, type 2 diabetes, breast cancer and prostate cancer. The instrument‐exposure
relationship is estimated in the UK Biobank cohort. However, child BMI is not measured directly in UK Biobank,
instead, there is a measure of self‐reported adiposity in three discrete categories (“thinner,” “plumper,” or “about
average”). In this context, the latent exposure is child BMI and the self‐report measure is a coarsening of child BMI.
Since the genetic instruments will act on child BMI directly, the exclusion restriction is likely to be violated.
Therefore, we apply the latent variable method of Section 3.2 to this data. We reanalyse the original univariable
effect of child BMI on risk of type 2 diabetes (OR = 2.32, 95% CI = 1.76–3.05), coronary artery disease (1.49,
1.33–1.68), and breast cancer (0.59, 0.50–0.71).
We apply the two‐sample generalisation of the inverse‐variance weighted estimator of Section 4.4, estimating the
instrument‐exposure relationship in UK Biobank using an ordered probit model and the instrument‐outcome re-
lationships using the MR‐Base platform (Hemani et al., 2018). We choose three values for θ2 based on a large GWAS
of adult BMI: 0.01, 0.02, and 0.05 (Locke et al., 2015). The genetic share of child BMI is estimated using an ordered
probit model and standard errors are calculated using the formula in section C of the appendix.
Figure 2 shows our results for three of the diseases analysed in the paper. Our estimates are in the same
direction as the original estimates, which is expected, however, the interpretation of the magnitudes is dif-
ferent. For example, the original paper estimates that a per‐category increase in self‐reported child adiposity
corresponds to an increase in the odds of coronary artery disease of 1.49 (95% CI = 1.33–1.68), which could be
inflated due to violation of the exclusion restriction. For θ = 0.022 , we estimate that a one SD increase in child
BMI corresponds to an increase in the odds of coronary artery disease of 1.13 (95% CI = 0.99–1.28). It is difficult
to directly compare the two sets of estimates since the exposures are different, however, our estimate is
suggestive of a modest effect of child BMI on the risk of coronary artery disease.

FIGURE 1 Effect of schizophrenia liability on risk of ever
using cannabis for several choices of sensitivity parameter θ2. 95%
confidence intervals are estimated as in section C of the appendix
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Assumption 1 (Single threshold). The latent exposure L
and its binary measurement D are related by a single
threshold model of the form ≥D I L= { 0}.

Assumption 2 (Additivity). L G V= − , where G and V
are, respectively, the genetic and environmental shares
of L.

Assumption 3 (Linearity). G is a linear function of the
genetic instrument Z and other genetic variants X , such
that G μ αZ γ X= + + ′ .

Assumption 4 (Environmental share). V has mean
zero, SD σV and is in some family of continuous
distributions, with cumulative distribution function
given by ∕F v σ F v( ) = ( )V V and density ∕f v σ f v( ) = ( )V V .

Assumption 5 (Risk factor independence). Z , X and V
are mutually independent.

Assumption 6 (Gene–environment equivalence). The
outcome model takes the form Y βL ε= + , where ε is a
random disturbance and X and V may be correlated
with ε.

Assumption 7 (Instrumental variable assumptions). Z
is independent of ε and ≠α 0.

3 | IDENTIFICATION

3.1 | Bias from the naive approach

The naive approach to Mendelian randomisation is to use
the coarsened exposure D as the exposure directly. We show
in this section that this results in a “multiplicative” bias
which will scale the true effect β up or down, but not change
its direction. When the distribution of L has a light tail (e.g.,
normal distribution), we will typically see inflation of effect
estimates, with the degree of inflation increasing as the
prevalence of D becomes smaller. If D is case status for a
disease, for example, then effect estimates will be more in-
flated for rarer diseases. We see this pattern of inflation oc-
curring in our real data examples in Section 5.

We call the naive Wald estimand ∕β cov Z Y= ( , )D

cov Z D( , ). It is illustrative to derive a closed‐form expression
for βD. Suppose Z is binary andG μ αZ= + (i.e., there is no
X ). Begin by noting that

by the mean value theorem, where ≤ ≤μ μ μ α* + . Thus,
the estimand can be written as

∕ ∕β cov Z Y cov Z D β f μ= ( , ) ( , ) = ( *),D V (4)

meaning that βD is equal to the true latent exposure effect
β divided by the density ofV at the value μ*. f μ( *)V is not
identified since the distribution of V is unknown and μ*
is defined on the scale of the latent exposure.

∕ ∣ ∣

≥ ∣ ≥ ∣

≤ ∣ ≤ ∣

cov Z D var Z pr D Z pr D Z

pr L Z pr L Z

pr V μ αZ Z pr V μ αZ Z

F μ α F μ

αf μ

( , ) ( ) = ( = 1 = 1) − ( = 1 = 0)

= ( 0 = 1) − ( 0 = 0) (Assumption 1)

= ( + = 1) − ( + = 0) (Assumptions 2, 3 and 4)

= ( + ) − ( ) (Assumption 5)

= ( *) (Assumption 4)

V V

V

FIGURE 2 Effect of childhood body mass index on risk of
several diseases for several choices of sensitivity parameter θ2. 95%
confidence intervals are estimated as in section C of the appendix

FIGURE 3 In the Falconer framework, liability to a disease is
assumed to follow a smooth (often normal) distribution. The
disease occurs at the tail of the distribution, with the grey region
representing expected prevalence in the population
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3.2 | The latent variable approach

The bias formula (4) indicates that the nuisance term is
⋅f ( )V , which is the distribution of the environmental share

V . Although D depends on this unobserved distribution, the
genetic share G does not. Our latent variable approach
therefore proceeds in four steps: (1) estimate the linear
predictor of a generalised linear model of D on Z and X ; (2)
normalise the linear predictor to have mean zero and var-
iance one; (3) use this normalised linear predictor as the
exposure in an instrumental variable model; and (4) scale the
resulting effect estimate up by the genetic variance of the
latent exposure. Step 4 is necessary to interpret effect esti-
mates in terms of SD increases in the latent exposure, which
is typically the desired scale.

To state this more precisely, define
∕

( )σ σ σ= +L G V
2 2 1 2

as the SD of L, where σG
2 and σV

2 are the variances of G
and V , respectively. Within the framework described in
Section 2, we claim that the four steps above allow us to
identify β σ β=L L from the observed data Z X D Y( , , , ).

The remainder of this section proves this claim given the
assumptions outlined in Section 2 and discusses its im-
plications. We begin by expressing the quantity pr D( =

∣X x Z z1 = , = ) within the framework of Section 2.
where ∕μ μ σ˜ = V , ∕α α σ˜ = V , and ∕γ γ σ˜ = V . F can be in-
terpreted as the link function in a generalised linear model
and μ̃, α̃, and γ̃ as parameters that can be identified from the
observable data. In practice, we could specify F directly, for
example, as a logistic or normal distribution (corresponding
to logistic and probit regressions respectively). Alternatively,
to avoid imposing potentially strong distributional assump-
tions, we could use semi‐parametric estimation methods for
generalised linear models, which only require some

smoothness conditions on F (Ichimura, 1993; Klein &
Spady, 1993). Disease liabilities are often assumed be the
product of many small, independent traits. Therefore, by the
central limit theorem, a normal distribution (i.e., probit
model) is a natural choice of link function in this context
(Curnow, 1972).

Step 1 is accomplished by constructing the predicted
genetic share of the latent exposure

∕G μ αZ γ X G σ˜ = ˜ + ˜ + ˜ = V
′

using parameters estimated from the generalised linear
model of D on Z and X . An immediate complication is
that σV is unobserved. Treating σV as a sensitivity para-
meter is not tractable since its value is defined on the
scale of the latent exposure, which is unknown. How-
ever, if we standardise G̃ by its SD as in step 2, we can
remove σV since

∕ ∕ ∕ ∕ ∕G σ G σ σ σ G σ˜ = ( ) ( ) = .G V G V G˜

By using ∕G σG as our exposure, we can obtain effects
in terms of SD increases in the genetic share of the latent
exposure. The instrumental variable estimand of step 3
equals

∕ ∕cov Z Y cov Z G σ σ β β( , ) ( , ) = = .G G G

This estimand does not often have a natural interpreta-
tion. We would prefer to interpret our effects in terms of
changes in the latent exposure itself.

Let ∕θ σ σ= G L
2 2 2 be defined as the genetic variance of

the latent exposure. If we have a suitable choice of θ2, we
can simply adjust our estimand as in step 4 such that

∕ ∕ ∕β θ σ β σ σ σ β β= ( ) = =G G G L L L

5

∣ ≥ ∣

≤ ∣

∕

pr D X x Z z pr L X x Z z

pr V μ αz γ x X x Z z

F μ αz γ x σ

F μ αz γ x

( = 1 = , = ) = ( 0 = , = ) (Assumption 1)

= ( + + = , = ) (Assumptions 2, 3 and 4)

= (( + + ) ) (Assumption 5)

= ( ˜ + ˜ + ˜ ),

V

′

′

′

(5)

FIGURE 4 The framework proposed in Section 2 is summarised in a directed acyclic graph. Dotted circles represent latent variables and
complete circles represent observed variables
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which is our desired effect. The parameter θ2 can be
treated as a sensitivity parameter and varied over a
plausible range of values or can, in some instances, be
obtained from GWAS which report this measure.

For disease liabilities in particular, Lee et al. (2012)
uses the Falconer liability‐threshold model to develop a
coefficient of determination for GWAS that is inter-
pretable on the liability scale, which corresponds to θ2.
Therefore, θ2 can be estimated using this approach or
selected from GWAS which report this coefficient. For
ease of interpretation, liability is often assumed to have
mean zero and variance one, in which case σ = 1L and β
itself is identified on this scale (Lee et al., 2012).

4 | SOME GENERALISATIONS

4.1 | Individual‐specific threshold

The formalisation of the relationship between disease
and liability in Equation (2) and Figure 3 assumes a fixed
threshold. That is, all individuals with liability above the
threshold will develop or be diagnosed with the disease
and all those below the threshold will not. In reality, we
might imagine that diagnosis has a random component,
driven, for example, by preferences of the diagnosing
clinician or imprecision of the testing procedure. It might
be more realistic to assume a model such that

≥{D
L R

L R
=

1 if

0 if <
(6)

where R is a random individual‐specific threshold. Provided
R is independent of the instrument Z and other variants X ,
this random threshold will not affect identification of μ α˜ , ˜ ,
and γ̃ of Equation (5) under correct model specification.
However, the link function F of Equation (5) no longer
corresponds to the distribution family of V ; instead, it cor-
responds to the distribution family of V R+ . This could
make correct specification of the link function more difficult
and semiparametric approaches may be warranted.

4.2 | Identifying effects of the
coarsened exposure

The structural model (3) assumes no direct effect of the
binary exposure measure D on the outcome. As discussed
in Section 3, when D is diagnosis of a disease, we might
expect resulting treatment or therapy to have an effect on
the outcome distinct from disease liability, suggesting a
structural equation model of the form

Y βL δD ε= + + . (7)

The exposure measure is downstream of the latent ex-
posure and there are assumed to be no direct pathways
from the genetic instruments to the exposure measure, as
illustrated in Figure 4. Therefore, we cannot use our
genetic instrument Z to estimate the independent effect
of the exposure measure on the outcome; the genetic
instruments induce no unique variation in the exposure
measure independent of the latent exposure. However,
consider the individual‐specific threshold of Section 4.1.
The variable R could represent preferences of the clin-
ician for diagnosing the disease or a change in clinical
practices affecting some individuals (Brookhart &
Schneeweiss, 2007; Davies et al., 2013). If R is in-
dependent of each individual's liability, without directly
affecting the outcome, then it is a potential instrument
for disease diagnosis. The general rule for separately es-
timating the effects of the latent exposure and coarsened
exposure is to have instruments which induce distinct
variation in both.

4.3 | Multivalued discrete exposure

This method generalises easily to the multivalued dis-
crete exposure setting. Suppose we observe a discretised
variable characterised by

≤

≤

⋮
D

L

L d

K d L

=

0 if 0

1 if 0 <

if <K

1

−1

⎧
⎨
⎪⎪

⎩
⎪⎪

(8)

where ⋯d d0 < < < K1 −1 are latent thresholds. D could
represent number of years in education and L could re-
present time in education as a continuous measure. Similar
to how the dichotomous exposure can be formulated as a
binary response model as in Equation (5), exposures of the
form (8) can be formulated as an ordered response model
and the parameters μ α˜ , ˜ , and γ̃ are still identified, allowing
the method to be applied as usual.

4.4 | Two‐sample design with GWAS
summary statistics

For rare diseases, it is not always possible to observe the
coarsened exposure D and the outcome Y in the same
sample. It is common practice in Mendelian randomi-
sation studies to use summary statistics from separate
GWAS of the exposure and outcome to obtain two‐
sample estimates (Burgess et al., 2015). This method
also generalises to the two‐sample setting using the
popular inverse‐variance weighted approach (Burgess
et al., 2013).

344 | TUDBALL ET AL.



Suppose there is a set Z j J= { : = 1, …, }J jZ of SNPs
from the exposure GWAS, of which a subset

≤Z j J J J= { : = 1, …, },J j 0 00
Z , is selected as instruments
from the outcome GWAS. Suppose we have estimates α̂̃j on
the log‐odds scale of the instrument‐exposure relationship α̃j
for each instrument in JZ and estimates of the instrument‐
outcome relationship Γ̂j for each instrument in J0Z .
Additionally, we need the variance σZ

2
j
for each instrument

in JZ , which can be obtained from reported allele
frequencies. Lastly, we also need estimates for the inverse‐
variance weights ∕w α σ= ˜̂j j

2

Γ̂
2
j
, where σ Γ̂j is the standard

error of Γ̂j. Under the assumption that the instruments in JZ

are mutually independent, the inverse‐variance weighted
estimator for β c=G ∕ ∕ov Z Y cov Z G σ( , ) ( , )G can be
obtained from the above summary statistics as

∑
∑ ∕

∑

∕

α σ
w α

w
˜̂

Γ̂ ˜̂

j

J

j Z
j

J
j j j

j

J
j=1

2 2

1 2

=1

=1

j

0

0

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ (9)

which is derived in section C of the appendix. We can
recover the effect in terms of σL (i.e., βL) by rescaling by a
suitable choice of θ2 as described in Section 3. Con-
veniently, the second term in (9) is the standard form of
the inverse‐variance weighted estimator. This means that
we can easily readjust existing Mendelian randomisation
estimates of coarsened exposures using only the exposure
GWAS and a choice for θ2. The large‐sample distribution
of the estimator (9) is derived in section C of the
appendix.

5 | REAL DATA EXAMPLES

We can assess the performance of this method in a realistic
setting by creating a dichotomised variable from an observed
continuous measure, BMI. The idea is to dichotomise BMI at
some threshold value and then treat only the dichotomisa-
tion as observed. We shall compare the true standardised
effect of BMI on some outcome with our procedure de-
scribed in Section 3 and with the naive approach of using the
dichotomisation as the exposure.

Our example is based on the Mendelian randomisa-
tion analysis performed in Lyall et al. (2017), which es-
timates the effect of BMI on several cardiometabolic
measures in the UK Biobank cohort. In particular, we
look at the effect of BMI on systolic blood pressure. This
is a convenient exposure‐outcome relationship to esti-
mate because we should not expect there to be threshold
effects, that is, the dichotomisations of BMI should have
no distinct effects on systolic blood pressure except
through BMI itself.

Consistent with Lyall et al. (2017), we use as potential
instruments the 93 genome‐wide significant SNPs

reported in Locke et al. (2015) available in UK Biobank
and we control for age, sex, assessment centre, alcohol
intake, smoking status and Townsend deprivation index,
along with genetic batch and the first 10 principal com-
ponents of the genetic relatedness matrix. To avoid weak
instrument bias, we prune these SNPs by including those
which correlate with BMI with ∣ ∣t > 4 (conditional on
the other SNPs) as instruments. We estimate the “true”
standardised effect of BMI on systolic blood pressure via
two‐stage least squares, finding that a one SD increase in
BMI corresponds to an increase in systolic blood pressure
of 1.53 mmHg (95% CI = 0.34–2.72). At each BMI
threshold, we then generate a binary variable equal to 1 if
an individual's BMI is above the threshold and 0 other-
wise. Treating only this binary measure as observed, we
apply the latent variable approach of Section 3.2 using a
probit link function.

The results of this example are summarised in Figure 5,
which compares the estimated effects with the “true” effect
of 1.53. The estimates using the dichotomised measure as the
exposure are highly sensitive to the choice of threshold.
Since we should not expect there to be distinct threshold
effects in this setting, this demonstrates that the dichot-
omised exposure is not capturing the effect of the latent
exposure, instead, it is picking up the shape of the distribu-
tion of the environmental risk factor for BMI, as discussed in
Section 3.1. As predicted by the bias formula in
Section 3.1, the estimates were inflated at the extreme
thresholds where the distribution is flatter.

For the latent variable approach, we select a θ2 of
0.0256 based on the R2 of our first‐stage regression of
BMI on the genetic variants. The effect estimate from this
approach is much less sensitive to the choice of thresh-
old. Furthermore, the estimates appear to accurately re-
cover the “true” effect of 1.53 regardless of the threshold

FIGURE 5 Comparison of estimated effect with “true” effect
for various BMI thresholds. N= 70,261, θ = 0.02562 , and 95%
confidence intervals are generated over 1000 bootstrap resamples.
“True” corresponds to the sample estimate using BMI as the
exposure; “naive” corresponds to using the binary measure as the
exposure βD; and “latent” corresponds to the latent variable
estimator βL of Section 3.2. BMI, body mass index
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value, ranging from 1.35 at a BMI cut‐off of 30 to 1.92 at a
BMI cut‐off of 22.5.

We can also investigate this approach in a more
realistic setting by reanalysing two existing papers. Box 1
gives an example of how existing two‐sample results
which do not have interpretable effect sizes can be re-
interpreted using this method. The original paper finds
that schizophrenia liability increases one's likelihood of
using cannabis, although the effect sizes are not inter-
pretable (Pasman et al., 2018). Using our approach, we
find that a one SD increase in liability corresponds to an
OR in the range 1.15–1.26 (95% CI 1.10–1.44) for ever
using cannabis. This approach allows us to infer the size
of this effect which, in this instance, is very modest.

Box 2 gives an example of how this approach can
correct exclusion restriction violations. In the original
paper the exposure is self‐reported adiposity which is
measured on a three‐point scale (“thinner,” “plumper,”
and “about average”). Genetic instruments will be acting
on the underlying measure of child adiposity (e.g., BMI)
rather than the three‐point scale, so the exclusion re-
striction is likely to be violated (Richardson et al., 2020).
We use our latent variable approach to ameliorate this
bias and to estimate the effect of child BMI directly,
which is the exposure of interest.

6 | DISCUSSION

We propose a simple framework for estimation and in-
terpretation of Mendelian randomisation for coarsened
measurements of latent continuous exposures. We begin
by demonstrating in Section 3.1 that using the coarsened
measurement as the exposure results in a multiplicative
bias which will inflate or deflate effect estimates without
reversing their sign. However, under the assumptions of
our framework, described in Section 2, we can recover
the effect of the latent exposure in terms of SD increases.
Section 4.4 shows that it is straight‐forward to generalise
this approach to the two‐sample setting. The key sensi-
tivity parameter in our approach is the genetic share of
the variance of the latent exposure, which may be esti-
mated or varied over a plausible range of values (Lee
et al., 2012). Section 5 evaluates this approach by creating
binary exposure measurements from the continuous BMI
measure in UK Biobank. We show that we can accurately
recover the effect of a SD increase in BMI on systolic
blood pressure. We also demonstrate this approach in
practice by re‐analysing two papers which are likely to
suffer from this type of exclusion restriction violation,
allowing us to meaningfully interpret their effect sizes.

The approach proposed in this paper relies on a
number of strong structural assumptions on the

relationship between the latent exposure and its corre-
sponding measurement. The appropriateness of these
assumptions must be assessed on a case‐by‐case basis.
Exposure measurements which are defined by strict
thresholds of the latent continuous exposure are easiest
to conceptualise within this framework. In general, the
assumption most difficult to justify is that the thresholds
are independent of the genetic share of the latent
exposure. One example where this assumption may be
violated is self‐report measures of mental health status,
for example, feelings of depression on a 1–5 scale. In-
dividuals who are genetically predisposed to depression
may have different thresholds for reporting their mental
wellbeing, either over‐ or under‐reporting.

An additional complication occurs when this method is
applied to disease exposures. We have assumed throughout
that disease occurrence and disease diagnosis are equiva-
lent; that is, everyone who develops the disease will receive
a diagnosis. However, there are often barriers to seeking
and accessing the healthcare services needed to receive a
diagnosis. These might include stigma surrounding the
disease, a lack of trust in healthcare providers or a lack of
access to healthcare services due to cost, distance or
institutional complexities (Cassim et al., 2019; Stangl
et al., 2019). It is therefore possible that individuals with the
disease will fail to be diagnosed. This can be viewed as a
form of misclassification bias. Misclassification‐robust
methods for binary exposures could potentially be in-
corporated into this approach, which we leave for future
work (Lewbel, 2000; Rekaya et al., 2016; Smith et al., 2013).

In studies where the assumptions in Section 2 are
believed to be implausible, it is important for researchers
to be transparent that the magnitude of their effect esti-
mate will not be well‐defined.
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APPENDIX A: IMPORTANCE OF THE
IDENTIFYING ASSUMPTIONS

Assumptions 1 and 3 require that the latent exposure and
measurement are related by a linear single index model.
This assumption imposes considerable structure on the
relationship between the two. To see why this assump-
tion is necessary for identification, consider the more
general model L G V ν Z X V= − = ( , ) − , where ⋅ν ( ) is
some continuous function. D is invariant to any mono-
tone transformation ⋅t ( ) in the sense that

≥ ≥D I ν Z X V I t ν Z X t V= { ( , ) } = { ( ( , )) ( )} (A1)

One such monotone transformation we can take is
⋅ ⋅t F( ) = ( )V , where ⋅F ( )V is the cumulative distribution

of V , such that

≥ ∣

≥

D I F ν Z X F V I pr D Z X

U

= { ( ( , ) ( )} = { ( = 1 , )

}

V V

(A2)

where U Unif~ (0, 1). This means that the observable
joint distribution of Z X D Y( , , , ) is consistent with any
monotone transformation of ν Z X( , ), including

∣pr D Z X( = 1 , ) itself. By imposing the structural as-
sumption that G ν Z X μ αZ γ X= ( , ) = + + ′ , we reduce
the class of models that the observed data distribution is
consistent with to ν Z X( , ) which are proportional to G.
This allows us to separate G, which is linear in para-
meters, from the nonlinear link function. In the absence
of this linear index assumption, this separation does not
occur. This approach to identification is within the class
of “identification by functional form” methods described
in Lewbel (2019), which provides an overview of this
class of methods and discusses their limitations.
Section B provides some simulation results when other
assumptions fail, namely, correct specification of the link
function and independence between the threshold and Z
and X , both of which can introduce considerable bias.
Bias from misspecification of the link function can be
ameliorated by using more flexible semiparametric
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binary outcome estimators (Ichimura, 1993; Klein &
Spady, 1993). Independence of the threshold from Z and
X is a reasonable assumption when these are genetic
factors and D is disease diagnosis or when D is a
deterministic categorisation of the latent exposure (i.e.,
splitting BMI into obesity status).

APPENDIX B: SIMULATING VIOLATIONS
OF THE IDENTIFYING ASSUMPTIONS

In this section, we present some simulation results which
violate the identifying assumptions stated in Section 2.
Our data generating process is as follows:

≥

Z N X Exp V SN a

G α Z α X

L G V

D I L bX

Y β L β X β V ε ε N

~ (0, 1), ~ (1), ~ (0, 1, )

= +

= − ,

= ( )

= + + + , ~ (0, 1)

iid iid iid

Z X

L X V

iid

We set parameters α α β( , , ,)Z X L equal to 1, β β( , )X V equal to
0.2, normalise Z , X andV to have mean 0 and normalise the
variances as follows: ∕var Z θ( ) = 2 52 , ∕var X θ( ) = 3 52 and
var V θ( ) = 1 − 2, where θ = 0.12 , meaning that σ = 1L .

SN a(0, 1, ) denotes the skew normal distribution with
skewness parameter a. We vary the skewness parameter
over a range of values in Table B1. When a = 0, this is
equivalent to the standard normal distribution, meaning that
the probit link will be correctly specified. As V becomes
more skewed, the bias increases. This bias can be amelio-
rated with semi‐parametric methods for binary outcomes
(Ichimura, 1993; Klein & Spady, 1993).

Another assumption that can be violated is in-
dependence between the threshold of D and the ob-
served variables Z and X . This dependence is
captured by the parameter b. Since α = 1X , b can be
interpreted as the relative contribution of X to the
threshold compared to the latent exposure L

(e.g., b = 0.5means that X contributes half as much to
the threshold as to the latent exposure). In Table B2,
we vary the parameter b over a range of values and
report the resulting bias. Despite the link function
being correctly specified, there is significant bias from
dependence in the threshold. Unlike misspecification
of the link function, semiparametric techniques can-
not correct this bias. When X determines the
threshold value, we cannot separately identify G in
this framework. This simulation also suggests that

TABLE B1 Ratio of estimated to true βL with link function misspecification

Value of the skewness parameter a

Choice of link function 0 1 2 3 4 5

Logistic 1.01 1.02 1.03 1.05 1.06 1.07

[1.01, 1.02] [1.01, 1.03] [1.03, 1.04] [1.04, 1.06] [1.05, 1.07] [1.06, 1.07]

Probit 1.01 1.02 1.03 1.05 1.06 1.07

[1.00, 1.02] [1.01, 1.03] [1.02, 1.04] [1.04, 1.06] [1.05, 1.07] [1.06, 1.08]

Semiparametric* 1.00 1.00 1.00 1.00 1.01 1.01

[0.99, 1.00] [0.99, 1.01] [0.99, 1.01] [1.00, 1.01] [1.00, 1.01] [1.00, 1.02]

*Klein and Spady estimator; mean over 1000 draws; N= 2500; a = 0; 95% Monte Carlo confidence.

TABLE B2 Ratio of estimated to true βL with threshold dependence

Choice of link
function

Value of the threshold dependence parameter b

0 0.1 0.25 0.5 1

Logistic 1.01 1.08 1.17 1.34 1.71

[1.01, 1.02] [1.07, 1.08] [1.16, 1.18] [1.33, 1.36] [1.69, 1.72]

Probit 1.01 1.07 1.17 1.33 1.69

[1, 1.02] [1.06, 1.08] [1.16, 1.18] [1.32, 1.34] [1.68, 1.70]

Semiparametric* 1.00 1.05 1.15 1.30 1.67

[0.99, 1] [1.05, 1.06] [1.14, 1.16] [1.29, 1.31] [1.66, 1.69]

*Klein & Spady estimator; mean over 1000 draws; N= 2500; a = 0; 95% Monte Carlo confidence intervals.
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threshold dependence may be bigger concern in this
approach than misspecification of the link function.

APPENDIX C: TWO ‐SAMPLE ESTIMATOR
AND VARIANCE DERIVATION

We begin by deriving Equation (9). For some instrument
Zki in J0Z , the estimand βG can be written as

∑

∕ ∕

∕

∕

∕

∕

σ β cov Z Y cov Z G σ

σ σ cov Z G

σ σ cov Z α Z

σ σ α σ

σ α

= ( , ) ( , )

= ( , )

= ,

=

= Γ ˜

G ki ki G

G Z Y ki

G Z Y ki

j

J

j ji

G Z Y k Z

G k k

=1

2

˜

k

k

k k

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ (C1)

which we can estimate from GWAS summary data. We
can use inverse‐variance weighting to “meta‐analyse”
over these estimates for each Zki in J0Z , which recovers
the estimator (9). Denote β̂ as the inverse‐variance
weighted estimator for σ βV , then our two‐sample esti-
mator can be written as

∑
∕

σ β α σ βˆ ˆ = ˜̂ ˆ.G

j

J

j Z˜

=1

2 2

1 2

j

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ (C2)

If we make the common assumption that α̂̃j has negli-
gible uncertainty (i.e., ≈α α˜̂ ˜j j), then we can write an
estimator for the variance of (C2) as

∑α σ σ˜̂ .
j

J

j Z β
=1

2 2
ˆ
2

j

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ (C3)
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