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Abstract

Mendelian randomization (MR) is an observational design based on the random transmission
of genes from parents to offspring. However, this inferential basis is typically only implicit
or used as an informal justification. As parent-offspring data becomes more widely available,
we advocate a different approach to MR that is exactly based on this randomization, making
explicit the common analogy between MR and a randomized controlled trial. We begin by
developing a causal graphical framework for MR which formalizes several biological processes
and phenomena, including population structure, gamete formation, fertilization, genetic linkage,
and pleiotropy. This causal graph is then used to detect biases in the MR design and identify
sufficient confounder adjustment sets to correct them. We then propose a randomization test
for causal hypotheses in the MR design by using precisely the exogenous randomness in meiosis
and fertilization. We term this “almost exact MR”, because exactness of the inference depends
on precisely knowing the distribution of offspring haplotypes resulting from meioses in one
or both parents, which is widely studied in genetics. We demonstrate via simulation that
propensity scores obtained from the underlying meiosis model can form powerful test statistics.
Besides transparency and conceptual appeals, our approach also offers some practical advantages,
including lack of commitment to a particular phenotype model, robustness to weak instruments,
and eliminating bias that may arise from population structure, assortative mating, dynastic
effects and linkage disequilibrium with pleiotropic variants. We conclude with a negative and
positive control analysis in the Avon Longitudinal Study of Parents and Children using our R
package almostexactmr (https://github.com/matt-tudball/almostexactmr).

1 Introduction

1.1 A brief history of Mendelian randomization

Mendelian randomization (MR) is a causal inference approach that uses the random allocation of
genes from parents to offspring as a foundation for causal inference (Sanderson et al. 2022). The
ideas behind MR can be traced back to the intertwined beginning of modern statistics and genetics
about a century ago. In one of the earliest examples, Wright (1920) used selective inbreeding of
guinea pigs to investigate the causes of colour variation and, in particular, the relative contribution
of heredity and environment. In a later defence of this work, Wright (1923, p. 251) argued that his
analysis of path coefficients, a precursor to modern causal graphical models, “rests on the validity of
the premises, i.e., on the evidence for Mendelian heridity”, and the “universality” of Mendelian laws
justifies ascribing a causal interpretation to his findings.
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At around the same time, Fisher (1926) started to contemplate the randomization principle in
experimental design and used it to justify his analysis of variance (ANOVA) procedure, which was
motivated by genetic problems. In fact, the term “variance” first appeared in Fisher’s groundbreaking
paper that bridged Darwin’s theory of evolution and Mendel’s theory of genetic inheritance (Fisher
1918). Fisher (1935) described randomization as the “reasoned basis” (p. 12) for inference and “the
physical basis of the validity of the test” (p. 17). Later, it was revealed that his factorial method of
experimentation derives “its structure and its name from the simultaneous inheritance of Mendelian
factors” (Fisher 1951, p. 330). Indeed, Fisher viewed randomness in meiosis as uniquely shielding
geneticists from the difficulties of establishing reliably controlled comparisons, remarking that “the
different genotypes possible from the same mating have been beautifully randomized by the meiotic
process” (Fisher 1951, p. 332).

While this source of randomization was originally used for eliciting genetic causes of phenotypic
variation, it was later identified as a possible avenue for understanding causation among modifiable
phenotypes themselves (Davey Smith 2006). Lower et al. (1979) used N-acetylation, a phenotype of
known genetic regulation and a component of detoxification pathways for arylamine, to strengthen
the inference that arylamine exposure causes bladder cancer. Katan (1986) proposed to address
reverse causation in the hypothesized effect of low serum cholesterol on cancer risk via polymorphisms
in the apolipoprotein E (APOE ) gene. He argued that, if low cholesterol was indeed a risk factor
for cancer, we would expect to see higher rates of cancer in individuals with the low cholesterol
allele. Another pioneering application of this reasoning can be found in a proposed study of the
effectiveness of bone marrow transplantation relative to chemotherapy (Gray and Wheatley 1991),
for example, in the treatment of acute myeloid leukaemia (Wheatley and Gray 2004). Patients with
a compatible donor sibling were more likely to receive transplantation than patients without. Since
compatibility is a consequence of random genetic assortment, comparing survival outcomes between
the two groups can be viewed as akin to an intention-to-treat analysis in a randomized controlled
trial. This paper appears to be the first to use the term “Mendelian randomization”.

It would be a dozen more years before an argument for the broader applicability of MR was
put forward by Davey Smith and Ebrahim (2003). At the time, a number of criticisms had been
levelled against the state of observational epidemiology and its methods of inquiry (Feinstein 1988;
Taubes 1995; Davey Smith 2001). Several high profile results failed to be corroborated by subsequent
randomized controlled trials, such as the role of beta-carotene consumption in lowering risk of
cardiovascular disease, with unobserved confounding identified as the likely culprit (Davey Smith
2001, p. 329-330). This string of failures motivated the development of a more rigorous observational
design with an explicit source of unconfounded randomization in the exposures of interest (Davey
Smith et al. 2020).

Originally, Davey Smith and Ebrahim (2003) recognized that MR is best justified in a within-
family design with parent-offspring trios. MR is commonly described as being analogous to a
randomized controlled trial with non-compliance. This analogy is based on exact randomization in
the transmission of alleles from parents to offspring which can be viewed as a form of treatment
assignment. From its inception, it was recognized that data limitations would largely restrict MR to
be performed in samples of unrelated individuals, which Davey Smith and Ebrahim 2003 termed
“approximate MR”. Such approximate MR has been the norm, seen in the majority of applied and
methodological studies to date. However, MR in unrelated individuals lacks the explicit source of
randomization offered by the within-family design, thereby suffering potential biases from dynastic
effects, population structure and assortative mating (Davies et al. 2019; Brumpton et al. 2020; Howe,
Nivard, et al. 2022).

In addition to random assignment of exposure-modifying genetic variants, we must also assume
that the effects of these genetic variants on the outcome are fully mediated by the exposure, known
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as the exclusion restriction. When this assumption holds, MR can be framed as a special case
of instrumental variable analysis (Thomas and Conti 2004; Didelez and Sheehan 2007). Within
this framework, there has been considerable recent methodological work to replace the exclusion
restriction with more plausible assumptions, typically by placing structure on the sparsity (Kang,
Zhang, et al. 2016) or distribution of pleiotropic effects across individual genetic variants (Bowden,
Davey Smith, and Burgess 2015; Zhao et al. 2020; Kolesár et al. 2015).

1.2 Towards an almost exact inference for MR

As parent-offspring trio data becomes more widely available, it is increasingly feasible to perform
MR within families, as originally intended. There has been some recent methodological and applied
development for within-family designs (Davies et al. 2019; Brumpton et al. 2020). Thus far this has
consisted of extensions of traditional MR techniques in which structural models for the gene-exposure
and gene-outcome relationships are proposed and samples are assumed to be drawn according to
these models from some large population. In particular, Brumpton et al. (2020) propose a linear
regression model with parental genotype fixed effects. Their inference is based on this model and so
the role of meiotic randomization is only implicit.

However, one of the unique advantages of MR as an observational design is that it has an explicit
inferential basis, randomness in meiosis and fertilization, which has been thoroughly studied and
modelled in genetics since Haldane (1919). Haldane developed a simple model for recombination
during meiosis that has demonstrated good performance on multiple pedigrees across many species.
The connection between this meiosis model and causal inference in parent-offspring trio studies
was recently described in the context of identifying causal genetic variants (Bates et al. 2020) and
was implicit in earlier genetic linkage analysis (Morton 1955) and the transmission disequilibrium
test (Spielman, McGinnis, and Ewens 1993). Lauritzen and Sheehan (2003) attempted to represent
meiosis models using graphs; however, they were concerned with computatational advantages of
graphical models and did not consider their potential for causal inference.

The idea of exact hypothesis testing dates back to Fisher’s original proposal for randomized
experiments and is well illustrated in his famous ‘lady tasting tea’ example (Fisher 1935). Pitman
(1937) appears to be the first to fully embraced the idea of randomization testing. This mode of
reasoning is usually referred to as randomization inference or design-based inference to contrast with
model-based inference. With the aid of the potential outcome framework (Neyman 1990; Rubin
1974), we can construct an exact randomization test for the sharp null hypothesis by conditioning
on all the potential outcomes (Rubin 1980; Rosenbaum and Rubin 1983). Randomization tests are
widely used in a variety of settings, including genetics (Spielman, McGinnis, and Ewens 1993; Bates
et al. 2020), clinical trials (Rosenberger, Uschner, and Wang 2019), program evaluation (Heckman
and Karapakula 2019) and instrumental variable analysis (Rosenbaum 2004; Kang, Peck, and Keele
2018).

1.3 Our contributions

In this article, we propose a statistical framework that enables us to use meiosis models as the
“reasoned basis” for inference in MR by unifying several ideas mentioned above. The randomization
test we propose is almost exact in the sense that the test has exactly the nominal size if the meiosis
and fertilization model is correct.

Our first contribution is a theoretical description of MR (and the assumptions therein) via the
language of causal directed acyclic graphs (DAGs) (Pearl 2009). These graphical tools allow us to
visualize and dissect the assumptions imposed on the biological processes involved in heredity. In
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particular, we show how various biological and social processes, including population stratification,
gamete formation, fertilization, genetic linkage, assortative mating, dynastic effects, and pleiotropy,
can be represented using a DAG and how they can introduce bias in MR analyses. Furthermore,
by using single world intervention graphs (SWIGs) (Richardson and Robins 2013), we identify
sufficient confounder adjustment sets to eliminate these sources of bias. Our results provide important
theoretical insights into a trade-off between reducing pleiotropy-induced bias and increasing statistical
power.

For statistical inference, we propose a randomization test by connecting two existing literatures.
The first literature concerns randomization inference for instrumental variable analyses, which usually
assumes that the instrumental variables are randomized according to a simple design (such as random
sampling of a binary instrument without replacement) (Rosenbaum and Rubin 1983; Kang, Peck,
and Keele 2018). However, in MR, offspring genotypes are very high-dimensional and are randomized
based on the parental haplotypes. The second literature attempts to identify the approximate
location of (“map”) causal genetic variants by modelling the meiotic process (Morton 1955; Spielman,
McGinnis, and Ewens 1993; Bates et al. 2020). We show how the hidden Markov model for meiosis
and fertilization implied by Haldane (1919) greatly simplifies the sufficient adjustment sets and
computation of the randomization test. In essence, our proposal extends existing randomization
inference techniques for instrumental variables to allow testing based on biological randomness in
reproduction (i.e. Mendelian randomization).

In addition to the considerable conceptual advantages, our almost exact MR approach has several
practical advantages too. First, unlike model-based approaches for within-family MR (Brumpton
et al. 2020), our approach does not rely on a correctly specified phenotype model. Nonetheless, the
randomization test can take advantage of an accurate phenotype model to dramatically improve
its power. Furthermore, the hidden Markov model based on Haldane’s original formulation implies
a propensity score for each instrument given a sufficient adjustment set (Rosenbaum and Rubin
1983). This can be used as a “clever covariate” (Rose and Laan 2008) to build powerful test statistics
with attractive robustness properties. Second, since the randomization test is exact, it is robust
to arbitrarily weak instruments. For an “irrelevant” instrument which induces no variation in the
exposure, the test will simply have no power. Finally, by taking advantage of the DAG representation
and using a sufficient confounder adjustment set, our method is also provably robust to biases arising
from population structure (including multi-ethnic samples), assortative mating, dynastic effects and
pleiotropy by linkage.

We demonstrate these advantages with a simulation study and real data example in the Avon
Longitudinal Study of Parents and Children (ALSPAC). The simulation study first confirms that
our almost exact test produces uniformly-distributed p-values under the null and then explores the
power of the test in a number of scenarios. The applied examples consists of a negative control and
a positive control. The negative control is the effect of child’s body mass index (BMI) at age 7 on
mother’s BMI pre-pregnancy. Although a causal effect is temporally impossible, backdoor paths
could exist to produce a false rejection of the null. We provide evidence that our almost exact test
closes these paths. The positive control is the effect of child’s BMI on itself plus some zero-mean
noise. We also compare our results with the results from a “typical” MR analysis unconditional on
any parental or offspring haplotypes.
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2 Background

2.1 Causal inference preliminaries

This section lays out some standard notation and assumptions in causal inference. Readers looking
for an introduction to causal inference concepts, including causal graphical models, single world
intervention graphs, randomization inference, and instrumental variables, can consult Appendix A.
We express our causal assumptions and model via causal graphs, then demonstrate that randomization
inference for instrumental variables is a natural vehicle for inference in within-family MR. As such, a
good grasp of these concepts is required to understand the remainder of the article.

Suppose we have a collection of N individuals indexed by i = 1, 2, . . . , N and, among these
individuals, we are interested in the effect of an exposure Di on an outcome Yi. For example, the
exposure could be the level of alcohol consumption over some period of time and the outcome
could be the resulting incidence of cardiovascular disease. Individual i’s potential outcomes (also
called counterfactuals) corresponding to exposure level Di = d are given by Yi(d). The collection of
potential outcomes for the sample is given by F = {(Yi(0), Yi(1)) : i = 1, 2, . . . , N}.

We make the no interference assumption which posits that the potential outcomes of each
individual are unaffected by the exposures of other individuals (Rubin 1980; Imbens and Rubin
2015), such that Yi(d) ⊥⊥ Dj for all i 6= j and d in the support of Di. We also assume no hidden
versions of the same treatment. A violation of this assumption could occur if Di ∈ {0, 1} were a
binary measure indicating abstinence (Di = 0) or some alcohol consumption (Di = 1). The effect
of alcohol consumption on cardiovascular disease is likely to exhibit a dose-response relationship,
meaning that the potential outcome Yi(1) is not well-defined since it could take multiple distinct
values depending on the unobserved amount of consumption. The previous two assumptions are
sometimes jointly referred to as the stable unit treatment value assumption (Rubin 1980). We also
make the consistency assumption (Hernán and Robins 2020) which states that the observed outcome
corresponds to the potential outcome at the realized exposure level Yi = Yi(Di).

2.2 Genetic preliminaries

Before we proceed, it is instructive to provide a basic overview of the relevant concepts in genetics, with
a focus on modelling the processes involved in genetic inheritance, namely meiosis and fertilization.
For a thorough exposition on statistical models for meiosis and pedigree data, see Thompson (2000).

Human somatic cells consist of 23 pairs of chromosomes, with one in each pair inherited from
the mother and the other from the father. Each chromosome is a doubled strand of helical DNA
comprised of complementary nucleotide base pairs. A base pair which exhibits population-level
variation in its nucleotides is called a single nucleotide polymorphism (SNP). DNA sequences are
typically characterized by the detectable variant forms induced by different combinations of SNPs.
These variant forms are called alleles. In this article, we will only consider variants with two alleles.
A set of alleles on one chromosome inherited together from the same parent is called a haplotype
(Bates et al. 2020) and the two haplotypes forming a homologous pair of chromosomes is called a
genotype.

Meiosis is a type of cell division that results in reproductive cells containing one copy of each
chromosome. During this process, homologous chromosomes line up and exchange segments of DNA
between themselves in a biochemical process called crossover. The recombined chromosomes are
then further divided and separated into gametes. Since recombinations are infrequent (roughly one
to four per chromosome in most eukaryotes) SNPs located nearby on the same parental chromosome
are more likely to be transmitted together, which results in genetic linkage. Fertilization is the
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Figure 1: Illustration of the meiotic process for five sites on a chromosome.
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process by which germ cells in the father (sperm cells) and mother (egg cells) join together to form
a zygote, which will normally develop into an embryo.

In genetic trio studies we observe the haplotypes of the mother, father and their child at p SNPs
on a single chromosome, where J = {1, 2, . . . , p} is the set of SNP indices. We will denote the
haplotypes as follows:

Individual’s haplotypes: Zm = (Zm
1 , . . . , Z

m
p ) ∈ {0, 1}p, Zf = (Zf

1 , . . . , Z
f
p ) ∈ {0, 1}p;

Mother’s haplotypes: Mm = (Mm
1 , . . . ,M

m
p ) ∈ {0, 1}p, M f = (Mf

1 , . . . ,M
f
p ) ∈ {0, 1}p;

Father’s haplotypes: Fm = (Fm
1 , . . . , F

m
p ) ∈ {0, 1}p, F f = (F f

1 , . . . , F
f
p ) ∈ {0, 1}p,

where the superscript m (or f) indicates a maternally (or paternally) inherited haplotype. Further-
more, denoteMmf

j = (Mm
j ,M

f
j ) as the mother’s haplotypes at site j and similarly for Fmf

j and Zmf
j .

The offspring’s genotype at site j ∈ J is given by Zj = Zm
j + Zf

j and let Z = Zm +Zf ∈ {0, 1, 2}p
denote the vector of offspring genotypes.

Figure 1 illustrates how an offspring’s maternally-inherited haplotype Zm at five sites on a
chromosome are related to the mother’s haplotypesMm andM f . At site j ∈ J in a gamete produced
by meiosis, the allele is inherited from either the mother’s m haplotype or f haplotype (ignoring
mutations). This can be formalized as an ancestry indicator, Um

j ∈ {m, f}. The classical meiosis
model of Haldane (1919) assumes that Um = (Um

1 , . . . , U
m
p ) follows a homogeneous Poisson process.

Haldane’s model is described in Appendix B in detail and can simplify our method considerably
(Section 3.5). Nonetheless, our “almost exact” MR framework is modular and does not rely on a
specific meiosis model. In fact, it is theoretically straightforward to incorporate more sophisticated
meiosis models that allow for “interference” between the crossovers (Otto and Payseur 2019). As the
meiosis model become more accurate, our test will become closer to exact randomization inference.

The description in the last paragraph does not take genetic mutation into account. Many meiosis
models assume that there is a small probability of independent mutations. This is formalized in the
next assumption.
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Assumption 1 (Haldane’s model). Given that Um
j = umj ∈ {m, f} and fertilization occurs (this

is represented as S = 1 in Section 3), each Zm
j is equal to M

(um
j )

j unless an independent mutation
occurs. More specifically,

Zm
j =

M
(um

j )

j with probability 1− ε
1−M

(um
j )

j with probability ε.

The same model holds for the paternally-inherited haplotypes.

The rate of de novo mutation ε is about 10−8 in humans (Acuna-Hidalgo, Veltman, and Hoischen
2016). Unless it is necessary to compute the exact randomization distribution under a recombination
model, for practical purposes it often suffices to treat ε = 0 (i.e., no mutations).

This meiosis model assumes the absence of transmission ratio distortion. Transmission ratio
distortion occurs when one of the two parental alleles is passed on to the (surviving) offspring at
more or less than the expected Mendelian rate of 50%. Transmission ratio distortion falls into two
categories: segregation distortion, when processes during meiosis or fertilization select certain alleles
more frequently than others, and viability selection, when the viability of zygotes themselves depend
on the offspring genotype (Davies et al. 2019). While we sidestep this discussion for now, we return
to it in Section 6.

3 Almost exact Mendelian randomization

3.1 A causal model for Mendelian inheritance

Returning to the alcohol and cardiovascular disease example in Section 2.1, observational studies
suggest that moderate alcohol consumption confers reduced risk relative to abstinence or heavy
consumption (Millwood et al. 2019). This could indicate systematic differences among people with
different drinking patterns (confounding) rather than a causal effect. There is a genetic variant in the
ALDH2 gene which regulates acetaldehyde metabolism. In some populations, an allele of ALDH2
produces a protein that is inactive in metabolising acetaldehyde, causing discomfort while drinking
and thereby reducing consumption. We might like to use the random allocation of variant copies of
ALDH2 during meiosis and fertilization to make causal inference about the downstream effect of
alcohol consumption on cardiovascular disease, however, we need to carefully clarify the conditions
under which this inference would be valid. To this end, we construct a very general causal model in
this section to describe the process of Mendelian inheritance and genotype-phenotype relationships.
This causal model allows us to identify sources of bias in within-family MR and construct sufficient
adjustment sets to control for them.

Under this causal model, the central idea behind almost exact MR is to base statistical inference
precisely on randomness in genetic inheritance via a model for meiosis and fertilization. Technically
speaking, we would like to apply the randomization test described in Appendix A.3 to MR.

Figure 2 shows a working example of our causal model on a chromosome with just p = 3 variants.
The directed acyclic graph is structured in roughly chronological order from left to right, where
A describes the population structure, S is an indicator for mating, and C is any environmental
confounder between the exposure D and outcome Y .

At first glance, Figure 2 appears to be quite complicated but, by the modularity of graphical
models, it can be decomposed into a collection of much simpler subgraphs that describe different
biological processes (Figure 3). By definition, a joint distribution factorizes according to the DAG in
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Figure 2: The single world intervention graph for a working example of a chromosome with p = 3
variants. Transparent nodes are observed and grey nodes are unobserved. Square nodes are the
confounders being conditioned on in Proposition 2. A is ancestry; M f = (Mf

1 ,M
f
2 ,M

f
3 ) is the

mother’s haplotype inherited from her father; Mm,Fm, and F f are defined similarly; Cm and Cf

are generic phenotypes of the mother and father; S is an indicator of mating; Zm = (Zm
1 , Z

m
2 , Z

m
3 )

is the offspring’s maternal haplotype and Um is a meiosis indicator; Zf and U f are defined simlarly;
Z = (Z1, Z2, Z3) is the offspring’s genotype; D is the exposure of interest; Y (d) is the potential
outcome of Y under the intervention that sets D to d; C is an environmental confounder between D
and Y .
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Figure 2 if its density function can be decomposed as (let f be a generic symbol for density function)

f(all variables)

=f(A)f(Um)f(U f )f(C) (Exogenous variables)

f(Mm,M f ,Fm,F f | A) (Population stratification, Section 3.1.1)

f(Cm | A,Mm,M f )f(Cf | A,Fm,F f ) (Parental phenotypes, Section 3.1.2)

f(Zm |Mm,M f ,Um)f(Zf | Fm,F f ,U f ) (Meiosis, Section 3.1.3)

f(S | Cm, Cf ) (Assortative mating, Section 3.1.3)

f(Z | Zm,Zf , S) (Fertilization, Section 3.1.3)

f(D | A,Z, Cm, Cf , C)f(Y (d) | A,Z, Cm, Cf , C) (Offspring phenotypes, dynastic effects,
confounding, Section 3.1.4)

Next, we describe each term on the right hand side above and its corresponding subgraph and
biological process. To simplify the discussion, we assume all DAGs in this article are faithful, so
conditional independence between random variables is equivalent to d-separation in the DAG.

3.1.1 Parental genotypes

We assume that parental genotypes originate from some arbitrary, latent population structure.
Population stratification is a phenomenon characterized by systematic differences in the distribution
of alleles among subgroups of a population. These disparities typically emerge from social and
genetic mechanisms including non-random mating, migration patterns and ‘founder effects’ (Cardon
and Palmer 2003) and can often be detected by principal component analysis (Patterson, Price, and
Reich 2006). This can introduce spurious associations between genetic variants and traits (Lander
and Schork 1994).

We represent population structure via the node A in the subgraph in Figure 3a. The arrows
from A to Mm,M f and Fm,F f indicate that the distribution of parental haplotypes depends on
the latent population structure. This is formalized in the assumption below.

Assumption 2. The parental haplotypes Mm, M f , Fm, and F f depend on the latent population
structure A, so

A 6⊥⊥ (Mm,M f ,Fm,F f ).

The node A may also capture any linkage disequilibrium in the parental haplotypes. That is,
because the parental haplotypes are determined by the same process as the grandparental haplotypes
and so on, recombination introduces dependence among nearby genetic variants. The distribution
of A and the distribution of the parental haplotypes given A are not important below, because an
appropriate subset of the parental haplotypes will be conditioned on and the paths from A to Mm,
M f , Fm, and F f will be blocked.

3.1.2 Parental phenotypes

We impose no assumptions on the nature and the distribution of the parental phenotypes Cm and
Cf . They can depend arbitrarily on the parental haplotypes Mm,M f ,Fm,F f and the population
structure A, once again because our proposal for almost exact MR conditions on the parental
haplotypes.
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(Section 3.1.1).
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2
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tion 3.1.4).

A
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Mm,Mf
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D d Y (d)

(e) Dynastic effects (Section 3.1.2).

Figure 3: The constituent subgraphs of our within-family Mendelian randomization model. White
nodes represent observed variables; grey nodes represent unobserved variables; and striped nodes
represent variables for which some elements may be unobserved.
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Assumption 3. The parental phenotypes Cm and Cf are descendants of the latent population
structure A and the corresponding parental haplotypes (i.e. (Mm,M f ) for Cm and (Fm,F f ) for
Cf ). In other words, we allow the following dependence:

Cm 6⊥⊥ (A,Mm,M f ), Cf 6⊥⊥ (A,Fm,F f ).

3.1.3 Offspring genotypes

There are two biological processes involved in the genesis of the offspring’s genotype: meiosis (gamete
formation) and fertilization. The meiotic process is briefly reviewed in Section 2.2, and the key
Assumption 1 can be represented by the causal diagram in Figure 3b (for the mother). A crucial
assumption underlying our almost exact inference is the exogeneity of the meiosis indicators Um and
U f . This is reflected in Figures 2 and 3b as Um and U f have no parents and their only children are
the offspring’s haplotypes. Formally, we assume:

Assumption 4. The meiosis indicators are independent of parental haplotypes and phenotypes and
any other confounders:

(Um,U f ) ⊥⊥ (A,Cm, Cf , C,Mm,M f ,Fm,F f ).

Many different models have been proposed for the distribution of the ancestry indicator Um; see
Otto and Payseur (2019) for a recent review. Due to the dependence in Um, nearby alleles on the
same chromosome tend to be inherited together. This phenomenon is known as genetic linkage. In
Section 2.2, we describe the classical model of Haldane (1919) which assumes Um follows a Poisson
process. This model has been used by Bates et al. (2020) to locate causal variants. We will see in
Section 3.5 that such Markovian structure greatly simplifies randomization inference.

Another mechanism that needs to be modeled is fertilization. In Mendelian inheritance, it is
assumed that the potential gametes (sperms and eggs) come together at random. However, mating
may not be a random event. Assortative mating refers to the phenomenon where individuals are
more likely to mate if they have complementary phenotypes. For example, there is evidence in UK
Biobank that a SNP on the ADH1B gene related to alcohol consumption is more likely to be shared
among spouses relative to non-spouses (Howe, Lawson, et al. 2019). This suggests assortative mating
on drinking behaviour and may introduce bias to MR studies on alcohol consumption (Hartwig,
Davies, and Davey Smith 2018). The subgraph describing assortative mating is shown in Figure 3c,
where the mating indicator S ∈ {0, 1} is a common child of the parental phenotypes Cm and Cf

(S = 1 means mating). In any MR study, we necessarily condition on S = 1, otherwise the offspring
would not exist. This is formalized in Figure 3c by the arrows from S to Z. In particular, we may
define the offspring’s genotype Z as

Z =

{
Zm +Zf , if S = 1,

Undefined, if S = 0.
(1)

Notice that the above definition recognizes the fact that the gametes Zm and Zf are produced
regardless of whether fertilization actually takes place.

Our causal model implies that Zm ⊥⊥ Zf | (Mm,M f ,Fm,F f , S = 1), however, this is not
necessarily a benign assumption. Indeed, there is empirical evidence that gametes may pair up
non-randomly (Nadeau 2017), which could be represented by arrows from Zm and Zf to S. This is
an example of transmission ratio distortion, which we discuss later in Section 6. For now, we simply
note that we must assume the absence of this phenomenon.
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3.1.4 Offspring phenotypes

Finally, we describe assumptions on the offspring phenotypes. We are interested in estimating the
causal effect of an offspring phenotype D ∈ D ⊆ R on another offspring phenotype Y ∈ Y ⊆ R. We
refer to D as the exposure variable and Y as the outcome variable. These phenotypes are determined
by the offspring genotypes and environmental factors (including parental traits). For a particular
realization of the genotypes z, we denote the counterfactual exposure as D(z). Furthermore, under
an additional intervention that sets D to d, we denote the counterfactual outcome as Y (z, d). These
potential outcomes are related to the observed data tuple (Z, D, Y ) by

D = D(Z), Y = Y (Z, D) = Y (Z, D(Z)),

which is a simple extension of the consistency assumption (11) before.
We are interested in making inference about the counterfactuals Y (d) = Y (Z, d) when the

exposure is set to d ∈ D. As the exposure D typically varies according to population structure,
parental phenotypes and other environmental factors, it is not randomized.

Assumption 5. There may be unmeasured confounders between the exposure and outcome, so that

Y (d) 6⊥⊥ D for some or all d ∈ D.

For example, if D is alcohol consumption and Y is cardiovascular disease, there may exist
offspring confounders such as diet or smoking habits which are common causes of both D and Y .
The exact nature of the confunders is not very important as MR uses unconfounded variation (in
Um and U f ) to make causal inference.

It will be helpful to categorize the genetic variants based on whether they have direct causal
effects on D and/or Y .

Assumption 6. The set J = {1, . . . , p} of genetic variants can be paritioned as J = Jy ∪ Jd ∪ J0,
where

• Jy includes all pleiotropic variants with a direct causal effect on Y (some of which may have a
causal effect on D as well).

• Jd includes all causal variants for D with no direct effect on Y .

• J0 = J \ (Jy ∪ Jd) includes all other variants.

In our working example in Figure 2, Jy = {3}, Jd = {2}, and J0 = {1}. If the exposure D
indeed has a causal effect on the outcome Y , the loci of the causal variants of Y are given by Jy ∪Jd.

For subscripts s ∈ {0, d, y}, we let Zs = {Zj : j ∈ Js} denote the corresponding genotypes, which
has support Zs = {0, 1, 2}|Js|. By Assumption 6, our potential outcomes can be written as (with an
abuse of notation)

D(z) = D(zd), Y (z, d) = Y (zy, d), Y (z) = Y (zy, D(zd)) = Y (zy, zd),

where z = (zd, zy, z0) ∈ Zd ×Zy ×Z0 = Z and d ∈ D.
Figure 3d provides the graphical representation of Assumption 6. Each element of Z0 has no

effect on D or Y (d), each element of Zd has an effect on D and each element of Zy has an effect on
Y (d) (some are also causes of D). The vector Zy contains the so-called pleiotropic variants that
are causally involved in the expression of multiple phenotypes (Hemani, Bowden, and Davey Smith
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2018). The view that pleiotropy is widespread, if not universal, is implied in Fisher’s infinitesimal
model (Fisher 1918) and supported by recent human genetic studies (Boyle, Li, and Pritchard 2017).

Dynastic effects, sometimes called genetic nurture (Kong et al. 2018), is a phenomenon charac-
terized by parental phenotypes exerting a direct influence on the offspring’s phenotypes. This is
depicted in Figure 3e, where paths emanate from the parental haplotypes Mm,M f and Fm,F f to
the parental phenotypes Cm and Cm and on to the offspring phenotypes D and Y .

3.2 Conditions for identification

With the causal model outlined in Section 3.1 in mind, we now describe some sufficient conditions
under which some Zj ∈ Z is a valid instrumental variable for estimating the causal effect of D on
Y . Recall that an instrumental variable induces unconfounded variation in the exposure without
otherwise affecting the outcome. Due to population stratification (Figure 3a), assortative mating
(Figure 3c), and dynastic effects (Figure 3e), the offpsring genotypes Z as a whole are usually not
properly randomized without conditioning on the parental haplotypes. That is,

Z 6⊥⊥ D(z), Y (z, d) for some or all z ∈ Z and d ∈ D.

To restore validity of genetic instruments, the key idea is to condition on the parental haplotypes
(Spielman, McGinnis, and Ewens 1993; Bates et al. 2020). This allows us to use precisely the
exogenous randomness in the ancestry indicators Um and U f that occurs during meiosis and
fertilization. This idea is formalized in the next proposition.

Proposition 1. Under the causal graphical model described in Section 3.1, the offspring’s haplotype
Zm
j (or genotype Zj) at some site j ∈ J is independent of all ancestral and offspring confounders

given the maternal (or parental) haplotypes at site j:

Zm
j ⊥⊥ (A,Cm, Cf , C) | (Mm

j ,M
f
j , S = 1),

Zj ⊥⊥ (A,Cm, Cf , C) | (Mm
j ,M

f
j , F

m
j , F

f
j , S = 1).

(2)

However, the conditional independence (2) alone does not guarantee the validity of Zj as an
instrumental variable. The main issue is that Zj might be in linkage disequilibrium with other
causal variants of Y , as recognized by Bates et al. (2020) in the context of mapping causal variants.
Our goal is to find a set of variables V such that Zj is conditionally independent of the potential
outcome Y (d). This is formalized in the definition below.

Definition 1. We say a genotype Zj is a valid instrumental variable given V (for estimating the
causal effect of D on Y ) if the following conditions are satisfied:

1. Relevance: Zj 6⊥⊥ D | V ;

2. Exogeneity: Zj ⊥⊥ Y (d) | V for all d ∈ D;

3. Exclusion restriction: Y (zj , d) = Y (d) for all zj ∈ {0, 1, 2} and d ∈ D.

Simiarly, we say a haplotype Zm
j is a valid instrument given V if the same conditions above hold

with Zj replaced by Zm
j and zj ∈ {0, 1, 2} replaced by zmj ∈ {0, 1}.

In our setup (Assumption 6), the exclusion restriction is satisfied if and only if j 6∈ Jy.
Returning to the example in Figure 2, we see that Z3 does not satisfy the exclusion restriction

because Z3 has a direct effect on Y . The causal variant Z2 for D would be a valid instrument if we

13



Table 1: Some paths between Z1 and Y (d) in Figure 2.

Name of bias Path Blocking variable

Dynastic effect Zm
1 ←Mm

1 ,M
f
1 → Cm → Y (d) (Mm

1 ,M
f
1 )

Population stratification Zm
1 ←Mm

1 ,M
f
1 ← A→ Y (d) (Mm

1 ,M
f
1 )

Pleiotropy Zm
1 ← Um → Zm

3 → Z3 → Y (d) Zm
3 or Z3

Assortative mating Zm
1 ←Mm

1 ,M
f
1 ← Cm → S ← (Mm

1 ,M
f
1 ) or Zf

3

Cf ← Fm
3 , F

f
3 → Zf

3 → Z3 → Y (d) or Z3 or (Fm
3 , F

f
3 )

Nearly determined ancestry Zm
1 ← Um → Zm

3 ← (Mm
3 ,M

f
3 )

Mm
3 ,M

f
3 ← A→ Y (d)

condition on the corresponding haplotypes and Z3, but Z2 is not observed in this example. This
leaves us with one remaining candidate instrument: Z1 (and potentially its haplotypes Zm

1 and Zf
1 ).

The relevance assumption is satisfied as long as V does not block both of the following paths

Z1 ← Zm
1 ← Um → Zm

2 → Z2 → D;

Z1 ← Zf
1 ← U f → Zf

2 → Z2 → D.

The exclusion restriction is satisfied because Z1 is not a causal variant for Y . Finally, exogeneity is
satisfied if V blocks the path

Z1 ← Zm
1 ← Um → Zm

3 → Z3 → Y (d);

Z1 ← Zf
1 ← U f → Zf

3 → Z3 → Y (d).

Thus, we have the following result:

Proposition 2. For the example in Figure 2, the following conditional independence relationships
are true for all d ∈ D:

Zm
1 ⊥⊥ Y (d) | (Mmf

1 ,V m
{3} = (Mmf

3 , Zm
3 ), S = 1), (3)

Z1 ⊥⊥ Y (d) | (Mmf
1 ,Fmf

1 ,V{3} = (Mmf
3 ,Fmf

3 , Z3), S = 1). (4)

The adjustment variables above are minimal in the sense that no subsets of them satisfy the same
conditional independence.

Proof. The conditional independence follows almost immediately from our discussion above. To
show V = (Mmf

1 ,V m
{3}) is minimal for (3) and better understand the potential biases in MR studies,

Table 1 lists several paths between Zm
1 and Y (d) that are named after the key biological mechanism

involved. The table only includes the maternal paths, but the same blocking also holds for the
paternal paths.

To our knowledge, the potential bias in Table 1 due to nearly determined ancestry has not yet
been identified in the literature. This is a form of collider bias introduced because the ancestry
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indicator Um
j can often be almost perfectly determined if we are given the mother’s haplotypes and

the offspring’s maternal haplotype . For example, if the mother is heterozygous Mm
3 = 1,Mf

3 = 0
and the offspring’s maternal haplotype is Zm

3 = 1, then we know that Um
3 = m is true with very

high probability. Due to genetic linkage, there is also a high probability that Um
1 = m.

We conclude this section with a sufficient condition for the validity of Zm
j and Zj in our general

setting. To simplify the exposition, let V m
B = (Mmf

B ,Zm
B ) be a set of maternal adjustment variables,

where B ⊆ J \ {j} is a subset of loci. Furthermore, let VB = (Mmf
B ,Fmf

B ,ZB).

Theorem 1. Suppose Z = (Z1, . . . , Zp) is a full chromosome. Consider the general causal model
for Mendelian randomization in Section 3.1 and let j ∈ J be the index of a candidate instrument.
Then Zm

j is a valid instrument conditional on (Mmf
j ,V m

B ) if the following conditions are satisfied:

1. Zm
j 6⊥⊥ Zm

d | (M
mf
j ,V m

B , S = 1);

2. Zm
j ⊥⊥ Zm

y | (M
mf
j ,V m

B , S = 1);

Proof. The relevance of Zm
j follows from the first condition, because Zm

j is dependent on some causal
variants (or is itself a causal variant) of D. The exclusion restriction (j 6∈ Jy) follows directly from
the second condition. For exogeneity, paths from Zm

j to Y (d) either go through the confounders A,
Cf , Cm, or C, which are blocked by Mmf

j by Proposition 1, or through some causal variants of the
outcome as in Zm

j ← Um → Zm
y → Zy → Y (d), which are blocked by the second condition.

Since Proposition 1 ensures that, after conditioning on Mmf
j , Zm

j is independent of all ancestral
and offspring confounders (A,Cm, Cf , C), the only remaining threats to the validity of Zm

j as an
instrument are irrelevance and pleiotropy. The set B is chosen to ensure that Zm

j is independent of
all pleiotropic variants conditional on V m

B (condition 2 of Theorem 2) but not independent of the
set of causal variants (condition 1 of Theorem 2). We will work with a general B until Section 3.5
where we describe the structure of this set. It is straightforward to extend Theorem 1 to establish
validity of the genotype Zj at locus j as an instrumental variable. Details are omitted.

3.3 Hypothesis testing

This section describes our randomization-based approach to statistical inference in Mendelian
randomization studies. We begin by describing an idealized exact setting where the randomization
distribution is known. We then discuss the realistic setting where the randomization distribution
must be approximated by a meiosis model.

We first describe the simplest case where we use a single genetic variant from the offspring’s
maternally-inherited haplotype as an instrument. In particular, define the propensity score for some
instrument Zm

ij at locus j of individual i as

πmij = P(Zm
ij = 1 |Mmf

ij ,V m
iB ) (5)

where B ⊆ J . In words, πmij describes the randomization distribution of the haplotype Zm
ij conditional

on a set of parental and offspring haplotypes or genotypes chosen to satisfy the conditions in
Theorem 1.

Let us consider a model for the potential outcomes of the form

Yi(d) = Yi(0) + βd for all d ∈ D and i = 1, . . . , N. (6)
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Let F = {Yi(0) : i = 1, . . . , N} denote the collection of potential outcomes for all individuals i under
no exposure d = 0. Our goal is to test null hypotheses of the form

H0 : β = β0, H1 : β 6= β0 (7)

where β0 is some hypothetical value of the causal effect. If the null hypothesis is true, then the
model (6) implies that the potential outcome under no exposure d = 0 can be identified from the
observed data since

Yi(0) = Yi(Di)− β0Di = Yi − β0Di.

For ease of notation, let Qi(β0) = Yi − β0Di be the adjusted outcome.
Theorem 2 and the model (6) imply that we are testing the following conditional independence:

H0 : Zm
ij ⊥⊥ Qi(β0) | (Mmf

ij ,V m
iB ), H1 : Zm

ij 6⊥⊥ Qi(β0) | (Mmf
ij ,V m

iB ). (8)

Suppose we have selected a test statistic T (Zm
j | F) where possible dependence on (Mmf

j ,V m
B ) is

implicit. For example, this could be the coefficient from a regression of the adjusted outcome on the
instrument. The randomization-based p-value for H0 can then be written as

P (Zm
j | F) = P̃(T (Z̃m

j | F) ≤ T (Zm
j | F))

=
∑

z̃m∈{0,1}N
I{T (z̃mj | F) ≤ T (Zm

j | F)}
∏

z̃mi ∈z̃m

(πmij )z̃i(1− πmij )1−z̃i ,
(9)

where I{·} is the indicator function, Z̃m
j denotes a random draw from the distribution (5) and P̃

denotes probability with respect to the distribution (5). Given the propensity score and the null
hypothesis, this p-value can be computed exactly by enumerating over all possible values of Z̃m or
approximated by drawing Z̃m a finite number of times from πm

j ; see Algorithm 1 for the pseudo-
code. It is straightforward to replace the haplotype Zm

ij with the genotype Zij ; the randomization
distribution of Zij ∈ {0, 1, 2} is a simple function of πmij and πfij since meioses in the mother and
father are independent.

Equation (9) highlights that knowledge of the propensity score πm
j is essential for performing

randomization inference. However, πm
j describes a biochemical process occurring in the human

body which is not precisely known to, or controlled by, the analyst. Therefore, the best we can do
is perform almost exact inference by replacing πm

j with a reasonable model-based approximation.
The model we use in this paper is Haldane’s hidden Markov model described in Appendix B. As
discussed in Section 2.2 our method is modular in the sense that more sophisticated meiosis models
can easily be substituted as the randomization distribution; see Broman and Weber (2000) and Otto
and Payseur (2019) for discussion and comparison of alternative models.
Algorithm 1: Almost exact test
Compute the test statistic on the observed data t = T (Zm

j | F);
for k = 1, . . . ,K do

Sample a counterfactual instrument Z̃m
j from the randomization distribution (e.g.

Theorem 3 in Appendix B based on Haldane’s model);
Compute the test statistic using the counterfactual instrument t̃k = T (Z̃m

j | F);
end
Compute an approximation to the p-value in Equation (9) via the proportion of t̃1, . . . , t̃K
which are larger than t:

P̂ (Zm
j | F) =

|{k : t ≤ t̃k}|
K

.
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3.4 Choosing a test statistic

Our randomization test retains exact nominal size under the null hypothesis regardless of test
statistic, however, we can often improve power by selecting a test statistic that better blocks the
confounding paths between Zj and Q(β0). We show in Section 4.2 that test statistics that do
not control for confounders can have almost no power for certain null hypotheses. We propose a
powerful test statistic that can be constructed by including a so-called “clever covariate” (Scharfstein,
Rotnitzky, and Robins 1999; Rose and Laan 2008) in the test statistic

Xm
j =

Zm
j

πmj
−

1− Zm
j

1− πmj

such that

T (Zm
j | F) =

N∑
i=1

Qi(β0)X
m
j .

This covariate exploits the “central role of the propensity score” (Rosenbaum and Rubin 1983) that

Y (d) ⊥⊥ Zm
j | πmj .

where πmj is defined as in equation (5), provided 0 < πmj < 1. Conditioning on πmj blocks all
confounding paths between Zm

j and Y (d). Furthermore, πmj reduces to a single variable the
adjustment set (Mmf

j ,VB) which is potentially high dimensional and highly correlated.
Alternatively, we could improve power by constructing data-driven test statistics via flexible

machine learning techniques such as neural networks, gradient boosting or random forests, although
this may be computationally costly (Watson and Wright 2019).

3.5 Simplification via Markovian structure

Conditional independencies implied by Haldane’s model for meiosis also allow us to greatly simplify
the sufficient confounder adjustment set. Theorem 1 highlights a trade-off in choosing the adjustment
variables VB: by choosing a larger subset B, the second condition is more likely but the first condition
is less likely to be satisfied. The reason is that, when conditioning on more genetic variants, we are
more likely to block the pleiotropic paths to Y but we are also more likely to block the path between
the instrument and the causal variant.

The conditions in Theorem 1 are trivially satisfied with B = ∅ if Jy = ∅ and Jd 6= ∅, i.e., all
causal variants of Y on this chromosome only affect Y through D. However, this is a rather unlikely
situation. More often, we need to condition on other variants to block the pleiotropic paths, as
illustrated in the working example in Figure 2. To this end, we can utilize the Markovian structure
on the meiosis indicators Um and U f implied by Haldane’s model. Roughly speaking, such structure
allows us to conclude Zj ⊥⊥ Zl |Mmf

j ,Fmf
j ,V{k} for all j < k < l if there are no mutations and

Mf
k 6= Mm

k .
Let b1 and b2 (b1 < j < b2) be two heterozygous loci in the mother’s genome, i.e., Mf

b1
6= Mm

b1

and Mf
b2
6= Mm

b2
. Let A = {b1 + 1, . . . , b2− 1} be the loci between b1 and b2, which of course contains

the locus j of interest.

Theorem 2. Consider the setting in Theorem 1 and suppose

1. The meiosis indicator process is a Markov chain so that Um
j ⊥⊥ Um

l | Um
k for all j < k < l;
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2. There are no mutations: ε = 0.

Then Zm
j is a valid instrumental variable conditional on (Mmf

j ,V m
{b1,b2}) if

3. A ∩ Jd 6= ∅;

4. A ∩ Jy = ∅.

Proof. Because there are no mutations andMb1 andMb2 are heterozygous, we can uniquely determine
Um
b1

and Um
b2

from V m
{b1,b2}. By the assumed Markovian structure, this means that

Zm
j ⊥⊥ Zm

l |M
mf
j ,V m

{b1,b2} for all j < b1 or j > b2.

Thus, the last two conditions in Theorem 2 imply the first two conditions in Theorem 1.

One can easily mirror the above result for using the paternal haplotype Zf
j as an instrument vari-

able. Furthermore, let b′1 and b′2 (b′1 < j < b′2) be two heterozygous loci in the father’s genome. Then
it is easy to see that Zj = Zm

j +Zf
j is a valid instrument conditional on (Mmf

j ,Fmf
j ,V m

{b1,b2},V
f
{b′1,b′2}

)

if the last two conditions hold for the union A = {min(b1, b
′
1) + 1, . . . ,max(b2, b

′
2)− 1}.

Under the setting in Theorem 2, we can partition the offspring genome into mutually independent
subsets by conditioning on heterozygous parental genotypes. This partition is useful for constructing
independent p-values when we have multiple instruments. Suppose we have a collection of genomic
position B = {b1, . . . , bk} that will be conditioned on and let Ak = {bk−1 + 1, . . . , bk − 1} be the loci
in between (suppose b0 = 0 and bk+1 = p+ 1). This indues the following partition of the chromosome

J = A1 ∪ {b1} ∪ A2 ∪ {b2} ∪ . . . ∪ Ak ∪ {bk} ∪ Ak+1.

Proposition 3. Suppose Mm
j 6= Mf

j for all j ∈ B. Then, under the first two assumptions in
Theorem 2, we have

Zm
j ⊥⊥ Zm

j′ | (M
mf
j ,Mmf

j′ ,V
m
B ).

for any j ∈ Al and j′ ∈ Al′ such that l 6= l′.

Proof. The proof follows from an almost identical argument to Theorem 1. The assumption that
ε = 0 means that Um

j is uniquely determined for all j ∈ B from Mmf
j and Zm

j . Therefore the
assumed Markovian structure implies that conditioning on V m

B , along with the parental haplotypes
Mmf

j and Mmf
j′ , then induces the conditional independence.

3.6 Multiple instruments

Proposition 3 allows us to formalize the intuition that genetic instruments across the genome can
provide independent evidence about the causal effect of the exposure, if the right loci are conditioned
on.

Corollary 1. Zm
j and Zm

j′ are independent valid instruments conditional on (Mmf
j ,Mmf

j′ ,V
m
B ) if

1. The first two assumptions of Theorem 2 hold;

2. Al ∩ Jd 6= 0 and Al′ ∩ Jd 6= 0;

3. Al ∩ Jy = 0 and Al′ ∩ Jy = 0.
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Corollary 1 says that any two instruments are valid and independent if they lie within separate
partitions and each partition contains a causal variant of the exposure and does not contain any
pleiotropic variants (i.e. with a direct effect on Y not through D). As a result of this corollary, we
can combine the p-values using standard procedures to test the intersection or global null hypothesis
(Bretz, Hothorn, and Westfall 2016).

One such procedure is called Fisher’s method (Fisher 1925; Wang and Owen 2019). If {p1, p2, . . . , pk}
are a collection of independent p-values then, when all of the corresponding null hypotheses are true
(or a single shared null hypothesis is true),

−2
k∑

j=1

log(pj) ∼ X 2
2k,

where X 2
2k denotes the chi-squared distribution with 2k degrees of freedom. We use Fisher’s method

to aggregate our independent p-values in the applied example in Section 5.
As some instruments may violate the exclusion restriction, a more robust approach is to test

the partial conjunction of the null hypotheses (Wang and Owen 2019). In practice, it may not be
possible to separate closely linked instruments into partitions separated by a heterozygous variant,
in which case the hypothesis (8) can be tested using (Zm

j , Z
m
j′ ) jointly. Corollary 3 in Appendix C

derives the joint randomization distribution of a collection of instruments.

4 Simulation

4.1 Setup

In this section we explore the properties of our almost exact test via simulation. The set up of
the simulation is described in detail in Appendix D. To summarize, we consider a null effect of an
exposure on an outcome (i.e. β = 0), both of which have variance one, using 5 genetic instruments
on different chromosomes. The instruments are non-causal markers for nearby causal variants and
there are also pleiotropic variants in linkage disequilibrium with the instruments. From the above
setup we simulate a sample of 15,000 parent-offspring trios.

To make our setup more tangible, Table 2 shows the first 6 lines of observed and counterfactual
data (in red) from the simulation for one of the instruments and corresponding parental haplotypes.
We can see that individual 4 will provide almost no information for a test of the null hypothesis;
both of her parents are homozygous so there is no randomization in her genotype outside of de novo
mutations. Conversely, both of individual 1’s parents are heterozygous so she could receive both
major alleles, both minor alleles or one of each.

Suppose we wish to test the null hypothesis H0 : β = −0.3. Column Z̃i in Table 2 shows
a counterfactual draw of each individual’s instrument conditional on the adjustment set given in
Equation (22) in Appendix D, along with the adjusted outcome Qi(−0.3). Note that Z̃i is independent
of Qi(−0.3) by construction so the null hypothesis is necessarily satisfied for this counterfactual.
As expected individual 4 has the same genotype in this counterfactual, however, individual 1 now
inherits both minor alleles. Figure 4 plots a distribution of 10,000 counterfactual test statistics
drawn under the null hypothesis. The test statistic is the F-statistic from a regression of the adjusted
outcome on the instruments. The bars highlighted in red are larger than the observed test statistic,
such that the almost exact p-value is around 0.13.
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Table 2: First 6 lines of observed data from the simulation

i Zi Z̃i Mm
i Mf

i Fm
i F f

i Di Yi Qi(−0.3)

1 1 2 1 0 1 0 1.11 0.73 1.06
2 0 1 1 0 0 0 0.83 -0.52 0.77
3 1 1 1 0 0 0 0.94 0.31 0.59
4 0 0 0 0 0 0 1.43 3.30 3.73
5 0 0 0 0 0 0 0.15 1.34 1.38
6 0 0 0 0 0 0 -0.14 1.60 1.56

Figure 4: Histogram of 10,000 test statistics under the exact null hypothesis H0 : β = −0.3
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4.2 Power

In this section we simulate the power of our almost exact test using a correct adjustment set (see
Equation (22) in Appendix D). As the haplotypes are simulated according to Haldane’s meiosis
model, the randomization test should be exact. This is verified by the near-uniform distributions of
the p-values under the correct β = 0 in the left panels of Figure 5.

The histograms on the right side of Figure 5 depict the distribution of p-values under an
alternative hypothesis H1 : β = 0.5. The power to reject this hypothesis varies significantly across
the choices of test statistic. The simple F -statistic based on a linear regression of the adjusted
outcome on the instruments (test statistic 1) has almost no power, while the test statistic obtained
from the same model but with the propensity score included as a clever covariate (test statistic 2)
has a reasonable power of about 0.52.

Figure 6 expands upon the previous figure by plotting a power curve for test statistic 1 and 2.
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We can see that test statistic 1 has power almost equal to 0 between β0 = 0 and β0 = 1. This occurs
because the simple two-stage least squares estimator unconditional on the adjustment set is upward
biased, with an Anderson-Rubin 95% confidence interval of 0.64–0.89. We have minimal power to
reject null hypotheses in that region unless we condition on the confounders in the test statistic,
because the resampled instruments retain their correlation with the confounders.

Test statistic 2, which conditions on the confounders via a clever covariate, has a power curve
that is centred on the true null β0 = 0 and has significantly improved power in the region between
β0 = 0 and β0 = 1. However, it is interesting to note that using test statistic 2 is not always more
powerful than test statistic 1.

5 Applied example

5.1 Preliminaries

In this section we illustrate our approach using a negative control and a positive control. The
negative control is the effect of child’s BMI at age 7 on mother’s BMI pre-pregnancy. Dynastic effects
could induce a spurious correlation between child’s BMI-associated variants and their mother’s BMI
pre-pregnancy. This opens the backdoor path seen in Figure 3e. Closing this backdoor path is crucial
for reliable causal inference. The positive control is the effect of child’s BMI at age 7 on itself, plus
some mean-zero noise. We vary the proportion of the outcome that is attributable to noise to assess
the power of our test.

Our data consist of 6,222 mother-child duos from the Avon Longitudinal Study of Parents and
Children (ALSPAC). ALSPAC is a longitudinal cohort initially comprising pregnant women resident
in Avon, UK with expected dates of delivery from 1 April 1991 to 31 December 1992. The initial
sample consisted of 14,676 fetuses, resulting in 14,062 live births and 13,988 children who were
alive at 1 year of age. In subsequent years, mothers, children and occasionally partners attended
several waves of questionnaires and clinic visits, including genotyping. For a more thorough cohort
description, see Boyd et al. 2013 and Fraser et al. 2013. Please note that the study website contains
details of all the data that is available through a fully searchable data dictionary and variable search
tool (https://www.bristol.ac.uk/alspac/researchers/our-data/).

Our instruments are selected from the genome-wide association study (GWAS) of Vogelezang
et al. 2020, which identifies 25 genetic variants for childhood BMI, including 2 novel loci located
close to NEDD4L and SLC45A3. Of the genome-wide significant variants in the discovery sample,
we select 11 with a p-value of less than 0.001 in the replication sample. ALSPAC is included in the
discovery sample, so independent replication is important for avoiding spurious associations with
the exposure. Two of our instruments, rs571312 and rs76227980, are located close together near
MC4R and need to be tested jointly. We exclude rs62107261 because it is not contained in the 1000
Genomes genetic map file. Around each instrument, we condition on all variants which are more
than 500 kilobases away.

5.2 Data processing

We use ALSPAC genotype data generated using the Illumina HumanHap550 chip (for children)
and Illumina human660W chip (for mothers) and imputed to the 1000 Genomes reference panel.
We remove SNPs with missingness of more than 5% and minor allele frequency of less than 1%.
Haplotypes are phased using the SHAPEIT2 software with the duoHMM flag, which ensures that phased
haplotypes are consistent with known pedigrees in the sample. We obtain recombination probabilities
from the 1000 Genomes genetic map file on Genome Reference Consortium Human Build 37.
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Figure 5: Histograms of 1,000 p-values for several null hypotheses and test statistics. Test statistic 1
is the F-statistic from a linear regression of the adjusted outcome on the instruments. Test statistic
2 is similar but includes the propensity scores for each instrument as covariates. Test statistic 3
includes only the parental genotypes for each instrument as covariates.
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Figure 6: Power curves for two choices of test statistic. Test statistic 1 is the F-statistic from a
naive regression of the adjusted outcome on the instruments. Test statistic 2 is similar but includes
the propensity scores for each instrument as covariates. Each point on the figure is the rejection
frequency over 1,000 replications.
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5.3 Results

Table 3 shows the negative control results and Table 4 shows the positive control results across all
instruments. The last row of each table shows the p-value from Fisher’s method aggregated across
all independent p-values. The aggregated p-value for the negative control is 0.21, indicating little
evidence against the null. The aggregated p-values for the positive control range from 0.03 (when
10% of the simulated outcome is noise) to 0.16 (when 50% of the simulated outcome is noise). This
is weak evidence against the null, resulting from insufficiently strong instruments.

We can also compare the results in Tables 3 and 4 with a typical two-stage least squares (2SLS)
regression using the same offspring haplotypes as instruments, unconditional on parental or other
offspring haplotypes. For the negative control, the p-value from Fisher’s method is 0.02, indicating
some evidence against the null. This is expected, given that the backdoor paths remain unblocked.
For the positive control, the p-values from Fisher’s method range from less than 10−20 (when 10%
of the simulated outcome is noise) to 4.5 × 10−11 (when 50% of the simulated outcome is noise).
This indicates that the unconditional analysis has significantly more power to detect non-zero effects
compared to our “almost exact” test. We discuss potential reasons for, and implications of, this low
power in Section 6
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Table 3: Results from the ALSPAC negative control example.

Instrument (rsID) Chromosome Proximal gene P-value

rs11676272 2 ADCY3 0.45
rs7138803 12 BCDIN3D 0.55
rs939584 2 TMEM18 0.39
rs17817449 16 FTO 0.06
rs12042908 1 TNNI3K 0.35
rs543874 1 SEC16B 0.07
rs56133711 11 BDNF 0.59
rs571312, rs76227980 18 MC4R 0.48
rs12641981 4 GNPDA2 0.62
rs1094647 1 SLC45A3 0.19

Fisher’s method 0.21

Table 4: Results from the ALSPAC positive control example

Instrument (rsID) Chromosome Proximal gene P-value for noise of
10% 20% 50%

rs11676272 2 ADCY3 0.01 0.01 0.01
rs7138803 12 BCDIN3D 0.01 0.01 0.01
rs939584 2 TMEM18 0.98 0.95 0.88
rs17817449 16 FTO 0.33 0.35 0.44
rs12042908 1 TNNI3K 0.77 0.79 0.85
rs543874 1 SEC16B 0.48 0.64 0.92
rs56133711 11 BDNF 0.12 0.14 0.25
rs571312, rs76227980 18 MC4R 0.31 0.39 0.63
rs12641981 4 GNPDA2 0.49 0.56 0.76
rs1094647 1 SLC45A3 0.23 0.25 0.35

Fisher’s method 0.03 0.05 0.16

6 Discussion

Our test represents an almost exact approach to within-family MR, however, Section 5 demonstrates
that power may be limited relative to typical Mendelian randomization analyses in unrelated
individuals. Since our test can leverage the precise amount of power available in a single meiosis, this
suggests that Mendelian randomization in unrelated individuals is drawing power from elsewhere,
most likely many meioses across multiple generations. For example, an offspring with parents
who are homozygous for the non-effect allele offers no power in our test, since their genotype will
not vary across meioses. However, if we assume that genotypes are randomly distributed at the
population level (as MR in unrelated individuals must), that same offspring can act as a comparator
for individuals with the effect allele. Brumpton et al. 2020 corroborate this loss of power for
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their within-family method, but do not elaborate on the broader implications for how Mendelian
randomization is typically justified. It would be valuable for the MR literature to discuss the extent
to which Mendelian inheritance across multiple generations is driving the power behind existing
results.

We must also return to the problem of transmission ratio distortion (TRD) discussed in Section 2.2.
TRD violates the assumptions of our meiosis model that alleles are (unconditionally) passed from
parents to offspring at the Mendelian rate of 50%. We could represent TRD in our causal model in
Figure 2 via an arrow from the gametes (Zm,Zf ) to the mating indicator S. This indicates that
the gametes themselves influence survival of their corresponding zygote to term. If our putative
instrument Zm

1 is in linkage with any variant exhibiting TRD, then this invalidates it as an instrument.
Suppose Zm

3 exhibits TRD, then this opens collider paths via the parental phenotypes Cm and Cf ,
for example, Y (d) ← Cm → S ← Zm

3 ← Um → Zm
1 . The intuition is that parental phenotypes

related to the likelihood of mating become associated with offspring variants related to the likelihood
of offspring survival. Within our causal model, this pathway can be closed by conditioning on Zm

3 ,
with unconditioned variants obeying the meiosis model. If any unconditioned variants exhibit TRD,
then this bias will remain and our meiosis model will incorrectly describe the inheritance patterns of
any linked variants, resulting in an erroneous randomization distribution. Expanding resources of
parent-offspring data may allow us to test the prevalence of transmission ratio distortion, which will
help to inform the reasonableness of maintaining Mendel’s First Law in our meiosis and fertilization
model.
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A Introduction to causal inference

This section introduces some basic concepts in causal inference, including the potential outcomes
framework (Neyman 1990; Rubin 1974), randomization inference (Fisher 1935; Rubin 1980), in-
strumental variables (Wright 1923; Imbens and Rubin 2015), and single world intervention graphs
(Richardson and Robins 2013), which are essential for describing our methodology. Interested readers
can find a more thorough coverage of these topics in other texts (Imbens and Rubin 2015; Hernán
and Robins 2020).

A.1 Treatment assignment and potential outcomes

In the typical setup of a randomized experiment with non-compliance, we have a sample of N
individuals indexed by i = 1, 2, . . . , N and each individual is randomly assigned to receive a binary
treatment Zi ∈ {0, 1}. The common convention is that Zi = 1 denotes assignment to an experimental
treatment and Zi = 0 a control treatment. However, individuals might not comply with their
assigned treatment, and we denote the treatment that the individual actually takes as Di ∈ {0, 1}.
Finally, we observe an outcome variable Yi for each individual. As the treatment uptake Di is not
randomized, there may exist a confounding variable Ci that is a common cause of both Di and Yi.

Individual i has two potential outcomes (also called counterfactuals) of her treatment uptake,
Di(0) and Di(1). If she is randomized to the experimental (or control) treatment, she will take
treatment Di(1) (or Di(0)). For example, some individuals will take the experimental treatment
regardless of their assigned treatment, so Di(1) = Di(0) = 1. Each individual also has four potential
outcomes Yi(z, d) from the experiment corresponding to each combination of treatment assignment
z ∈ {0, 1} and treatment uptake d ∈ {0, 1}. Similarly, we may define the potential outcome with
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Table 5: Observed data from a hypothetical experiment for a LDL cholesterol-lowering drug.

i Zi Di Di(1) Di(0) Yi Yi(1) Yi(0)

1 1 1 1 ? 120 120 ?
2 1 1 1 ? 120 120 ?
3 1 0 0 ? 75 ? 75
4 0 0 ? 1 165 165 ?
5 0 0 ? 0 135 ? 135
6 0 0 ? 0 105 ? 105

just D being intervened on by Yi(d) = Yi(Zi, d), where the assigned treatment takes its “natural”
value Zi.

In defining these potential outcomes, we have implicitly made the no interference assumption
which states that individual j’s treatment is independent of individual i’s outcome when i 6= j
(Rubin 1980). To simplify the exposition, we further make the exclusion restriction assumption in
this section. That is, we assume that the treatment assignment has no causal effect on the outcome
except via treatment uptake, so

Yi(1, d) = Yi(0, d) = Yi(d) for d ∈ {0, 1}. (10)

Let F = {(Di(1), Di(0), Yi(0), Yi(1)), i = 1, . . . , N} denote the collection of potential outcomes for
all the individuals.

We define a causal effect of the treatment as a contrast of potential outcomes. When the
treatment is binary, the causal effect for individual i is given by βi = Yi(1)− Yi(0), the difference in
individual i’s outcomes between the two possible treatments. However, inference for the individual
treatment effect βi is difficult because we do not observe both potential outcomes of the same
individual simultaneously. This has been famously described as the “fundamental problem of causal
inference” (Holland 1986). Indeed, we only observe the potential outcome corresponding to the
treatment that is actually received, such that

Di =

{
Di(1) if Zi = 1,

Di(0) if Zi = 0;
and Yi =

{
Yi(1) if Di = 1,

Yi(0) if Di = 0.
(11)

The above equation is sometimes called the consistency assumption since it ensures that the observed
outcomes and potential outcomes are consistent with one another (Hernán and Robins 2020).

From this perspective, causal inference can be regarded as a missing data problem. Consider a
simple hypothetical experiment in Table 5 consisting of N = 6 individuals, 3 of whom are randomized
to take an experimental LDL cholesterol-lowering drug and 3 of whom are randomized to take
a placebo. However, not everyone adheres to the assigned treatment. The outcome variable is
LDL cholesterol measured in grams per litre (mg/dL). As discussed above, we can only observe
the potential outcomes corresponding to the observed treatment assignment and uptake; all other
potential outcomes are missing.

A.2 Causal graphical models

The setting above can be described by a directed acyclic graph (DAG) as shown in Figure 7a. Below
we will use some basic concepts in DAG models such as Markov properties and d-separation, which
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Figure 7: Causal diagram of the example in Appendix A

are described in detail in other texts (Lauritzen, Dawid, et al. 1990; Pearl 2009; Hernán and Robins
2020).

We will use single world intervention graphs (SWIG) to unify the counterfactual and graphical
descriptions of the causal inference problem (Richardson and Robins 2013). The SWIG representation
of our setting above is given in Figure 7b. Since we are interested in the causal effect of an intervention
on D, the SWIG splits that node into two halves: D, representing the randomized treatment, and
d, representing a fixed intervention value. The random half D inherits all incoming arrows in the
original DAG and the fixed half d inherits all outgoing arrows. Descendants of the intervention node
(in this case Y ) are replaced with the potential outcomes Y (d) under the intervention value d.

It has been shown that SWIGs define a graphical model for the potential outcomes (Richardson
and Robins 2013), so we can apply d-separation to obtain conditional independence between
counterfactuals. For example, Figure 7b implies exchangeability (or ignorability),

Zi ⊥⊥ Yi(d) for all d ∈ {0, 1}. (12)

However, Di ⊥⊥ Yi(d) is generally not true due to the confounder Ci.

A.3 Randomization inference for instrumental variables

To construct an exact randomization test, the key idea is to base the inference precisely on the
randomness introduced by the experimenter. To this end, we must characterize the treatment
assignment mechanism.

Let Z = (Z1, . . . , ZN )ᵀ denote the N -vector of treatment assignments. To simplify the exposition,
we will assume that the experiment is completely randomized, such that a fixed number of individuals
Nt are assigned to the experimental treatment and Nc = N−Nt are assigned to the control treatment.
The same method below can be applied to more sophisticated assignment mechanisms (such as
the ones we describe later for within-family MR). Let Ω = {(z1, . . . , zN ) ∈ {0, 1}N :

∑N
i=1 zi = Nt}

denote the set of feasible assignment vectors. By assumption, all assignment vectors in Ω are realized
with equal probability. Stated formally, the randomization distribution can be written as

P(Z = z | F) =


(
N

Nt

)−1
, for all z ∈ Ω,

0, otherwise.
(13)

To illustrate randomization inference, consider the hypothetical experiment in Table 5. Suppose
we are interested in evaluating the effectiveness of this drug at lowering LDL cholesterol. However,
although the drug is initially randomly assigned, the treatment uptake is not randomized. In
particular, non-compliance may be driven by a confounder Ci ∈ {0, 1}. This might be an underlying
comorbidity such that those with Ci = 1 have a higher baseline outcome Yi(0) but experience
negative side effects from the experimental treatment. Due to the side effects, individuals with the
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comorbidity (such as i = 3 in Table 5) may be inclined to switch to the control treatment when
they are assigned to the experimental drug. Due to the systematic shift of high baseline individuals
from the experimental treatment to the control treatment, a simple intention-to-treat estimate (by
regressing Yi on Zi) will underestimate the causal effect.

To address unobserved confounding such as systematic non-compliance, one approach is to use
an instrumental variable. An instrumental variable induces unconfounded variation in the treatment
without otherwise affecting the outcome. In our example, the randomized treatment assignment
Zi ∈ {0, 1} is a good instrument for treatment uptake Di, because it will change the outcome Yi
only through Di by the exclusion restriction assumption (10). Furthermore, it is independent of the
underlying comorbidity status and the counterfactual outcomes, as shown by (12).

Randomization inference for instrumental variables (Rosenbaum 2004; Kang, Peck, and Keele
2018) tests sharp null hypotheses of the form

H0 : Yi(d)− Yi(0) = β0d, for all d ∈ {0, 1}.

This implies a constant additive treatment effect β0 across individuals. Under this hypothesis and
the consistency assumption (11), the baseline potential outcome can be written in terms of the
observable data (Zi, Di, Yi) as

Yi(0) = Yi − β0Di =

{
Yi, if Di = 0,

Yi − β0, if Di = 1,

which is termed as the “adjusted response” by Rosenbaum (2004). Therefore, when the null hypothesis
is true, the randomization of Zi, namely (12), implies that

Zi ⊥⊥ Yi − β0Di.

Consequently, testing the null hypothesis H0 that the causal effect is a constant β0 is equivalent to
testing the independence of Zi and Yi − β0Di. To this end, a simple test statistic is the difference in
outcomes between the two groups,

T (Z | F) =
N∑
i=1

Zi(Yi − β0Di)−
N∑
i=1

(1− Zi)(Yi − β0Di)
H0=

∑
i:Zi=1

Yi(0)−
∑

i:Zi=0

Yi(0).

The randomization test then rejects H0 at significance level α, if the p-value

P (Z | F) = P̃(T (Z̃ | F) ≤ T (Z | F))

is less than or equal to α. Here Z̃ is an independent copy of Z and P̃ means that the probability is
taken over Z̃ according to the randomization distribution (13). In plain terms, we are asking: if we
re-ran the experiment many times under the null hypothesis (i.e. Zi and Yi− β0Di are independent),
how often would we observe a test statistic more extreme than our observed test statistic? If this
probability is lower than α, then we have little confidence in the null hypothesis.

This p-value has size α in the sense that

P(P (Z | F) ≤ α | H0) = α.

for any significance level 0 ≤ α ≤ 1 and test statistic T (· | F). For continuously distributed test
statistics the proof relies on the idea that T (Z̃ | F)

d
= T (Z | F) under H0 which means that
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P (Z | F) is the cumulative distribution of T (Z̃ | F) at T (Z | F). Since cumulative distributions
are uniformly distributed the result follows.

Next, we illustrate the randomization test using the hypothetical experiment in Table 5 and the
null hypothesis H0 : Yi(0) = Yi(1) for all i (i.e. β0 = 0). For the realized experiment in Table 5,
the difference in outcomes between the experimental and placebo groups is (120 + 120)/2− (75 +
165 + 135 + 105)/4 = 0. In other words, average LDL cholesterol appears to be identical in the
experimental and control arms. However, it is unclear whether this should be interpreted as evidence
of a null causal effect. As discussed above, it is possible that individuals with high baseline outcomes
are more inclined to switch from the experimental treatment to the control treatment.

Our observed test statistic for this experiment is T (Z | F) = (120 + 120 + 75)/3− (165 + 135 +
105)/3 = −30. Since we know the missing potential outcomes under the null hypothesis and we
know the mechanism by which treatment was randomly assigned, we can also consider the results of
counterfactual experiments. Table 6 shows a counterfactual experiment that could have occurred
with missing potential outcomes imputed under the null. The counterfactual treatment assignment
is given by Z̃i to distinguish it from the factual Zi. We can compute the difference in outcomes
from this counterfactual experiment, equal to T (Z̃ | F) = 420/3− 300/3 = 40. Indeed, we could
enumerate the counterfactual results from all 20 equally possible experiments, shown in Figure 8.
The bars highlighted in red are comprised of 4 counterfactual experiments with an average outcome
difference less than or equal to that observed in our actual experiment. Therefore, under the null
hypothesis, the one-sided probability of observing a result more extreme than our observed result is
4/20 or 20%.

Table 6: Imputed data from a counterfactual experiment under the exact null hypothesis

i Z̃i Di Di(1) Di(0) Yi Yi(1) Yi(0)

1 1 1 1 ? 120 120 120
2 0 1 1 ? 120 120 120
3 0 0 0 ? 75 75 75
4 1 0 ? 1 165 165 165
5 1 0 ? 0 135 135 135
6 0 0 ? 0 105 105 105

B Randomization distribution of offspring alleles

The distribution of offspring haplotypes is often approximated by a first order hidden Markov model
(HMM) (Haldane 1919; Thompson 2000; Bates et al. 2020). This model assumes “no interference”,
such that the location of crossover events are independent and the likelihood of an offspring inheriting
a SNP from a given maternal or paternal haplotype depends only on the inheritance at adjacent loci.
This induces a Poisson renewal process for the distribution of distances between crossovers, however,
it should be noted that there is evidence of positive crossover interference in human meioses which
results in a more even spread of crossovers than would be expected with random placement. Recent
literature has therefore suggested that a Gamma renewal process may be a more appropriate model,
although we do not provide this extension here (Otto and Payseur 2019).

The randomness in our randomization distribution arises from both the location of crossover
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Figure 8: Histogram of outcome differences for the exact null hypothesis
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events (i.e. the transition distribution) and the small probability of independent de novo mutations
(i.e. the emission distribution). Without loss of generality, we describe the distribution of offspring
alleles inherited from the mother Zm given maternal haplotypes Mm and M f . Inheritance from
the father is an independent instance of the same model. The transition distribution for the meiosis
indicator at site j is assumed to be Poisson with mean equal to the genetic distance in centimorgans
rj between site j − 1 and j:

P(Um
j = umj−1 | Um

j−1 = umj−1) = P(even number of recombinations between j − 1 and j)
= 1

2(1 + e−2rj );

P(Um
j = Um

j′ ) = 1
2(1 + e−2(dj+...+dj′ ))

where umj−1 ∈ {m, f} and j < j′. Genetic distance is not proportional to physical distance on
the chromosome due to the presence of recombination hotspots where crossover events are more
likely to occur (Belmont et al. 2005; Bherer, Campbell, and Auton 2017). As rj becomes large, the
likelihood of an even number of recombinations approaches one half since genetically distant sites
are transmitted almost independently.

The emission distribution is characterized by the probability of independent de novo single
nucleotide mutations. A de novo mutation is said to occur when the base pair at some offspring
SNP differs from the base pair they inherited from the parental haplotype. Within the context of
the model, conditional on Um

j = umj ∈ {m, f}, each Zm
j is sampled according to

P(Zm
j = M

(um
j )

j | Um
j = umj ) = 1− ε (14)

The probability of a de novo mutation ε is approximately 1·10−8 in humans (Acuna-Hidalgo, Veltman,
and Hoischen 2016).

The graphical structure of the hidden Markov model is shown in Figure 9. This graph differs
from the more general structure shown in Figure 3b in that each meiosis indicator Um

j depends only
on the previous indicator Um

j−1. Figure 10 embeds the hidden Markov model within the complete
causal model used throughout Section 3.2.
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Our primary use of the Markovian structure described above is to derive propensity scores
for offspring haplotypes Zm

j ∈ {0, 1}. In particular, our goal is to express the propensity score of
some SNP Zm

j given the adjustment set (Mmf
j ,V m

B ) of Theorem 1, where V m
B = (Mmf

B ,Zm
B ) and

B ⊆ J \ {j}. Throughout this section we will assume that B = {1, . . . , l} ∪ {h, . . . p} for l < j < h.
Suppressing conditioning on Mmf

j and Mmf
B for ease of notation, the propensity score for Zm

j can
be written as

P(Zm
j = 1 | Zm

B = zmB ) =
∑

u∈{m,f}
P(Zm

j = 1 | Um
j = u)P(Um

j = u | Zm
B = zmB ). (15)

It is therefore more convenient to consider the conditional probability of Um
j . We state the following

theorem:

Theorem 3. Using the conditional independence properties implied by Figure 3b, the conditional
probability of Um

j = m can be factorized as

P(Um
j = m | Zm

B = zmB )

∝
[ ∑
u∈{m,f}

βmh−1(u)P(Um
h−1 = u | Um

j = m)

][ ∑
u∈{m,f}

P(Um
j = m | Um

l = u)αm
l (u)

]
.

The forward weights are defined recursively as

αm
1 (um1 ) =

{
1
2(1− ε) if Mum

1
1 = zm1

1
2ε if Mum

1
1 6= zm1

αm
k (umk ) =

∑
u∈{m,f}

P(Zm
k = zmk | Um

k = umk )P(Um
k = umk | Um

k−1 = u)αm
k−1(u), k = 2, . . . , p

and the backward weights are defined recursively as

βmp (ump ) = 1

βmk (umk ) =
∑

u∈{m,f}
βmk+1(u)P(Um

k+1 = u | Um
k = umk )P(Zm

k+1 = zmk+1 | Um
k+1 = u), k = 1, . . . , p− 1,

for umk ∈ {m, f} and j, k ∈ J .

If we impose the simplifying assumption that ε = 0, so that there is zero probability of de novo
mutations, then the distribution of Um

j derived in Theorem 3 can be simplified further.

Corollary 2. Suppose the probability of a single nucleotide de novo mutation is ε = 0 and suppose
that the maternal haplotypes at b1, b2 ∈ J are heterozygous, where b1 < l < j < h < b2. That is,
Mm

b1
6= Mf

b1
and Mm

b2
6= Mf

b2
. Then the propensity score in Theorem 3 can equivalently be written as

P(Um
j = m | Zm

B = zmB )

∝
[ ∑
u∈{m,f}

β̃mh−1(u)P(Um
h−1 = u | Um

j = m)

][ ∑
u∈{m,f}

P(Um
j = m | Um

l = u) α̃m
l (u)

]
.

where

α̃m
b1+1(u

m
b1+1) = P(Zm

b1+1 = zmb1+1 | Um
b1+1 = umb1+1)P(Um

b1+1 = umb1+1 | Um
b1

= umb1)

α̃m
k (umk ) =

∑
u∈{m,f}

P(Zm
k = zmk | Um

k = umk )P(Um
k = umk | Um

k−1 = u)α̃m
k−1(u), k = b1 + 2, . . . , p;
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and

β̃mb2−1(u
m
b2−1) = P(Um

b2
= umb2 | U

m
b2−1 = umb2−1)P(Zm

b2
= zmb2 | U

m
b2

= umb2)

βmk (umk ) =
∑

u∈{m,f}
β̃mk+1(u)P(Um

k+1 = u | Um
k = umk )P(Zm

k+1 = zmk+1 | Um
k+1 = u), k = 1, . . . , b2 − 2.

We will occasionally have multiple instruments lying in the same window. We will then need to
compute a multivariate propensity score. We state the following corollary without proof because it
follows almost immediately from Theorem 3.

Corollary 3. Suppose we have a collection of instruments J = {j1, j2, . . . , jr} such that l < j1 <
j2 < . . . < jr < h. Then the propensity score can be written as

P(Um
j1 = umj−1, U

m
j2 = umj2 , . . . , U

m
jr = umjr | Z

m
B = zmB ) (16)

= P(Um
j1 = umj1 | Z

m
B = zmB )

r∏
k=2

P(Um
jk

= umjk | U
m
jk−1

= umjk−1
,Zm
B = zmB ) (17)

The first propensity score P(Um
j1

= m | Zm
B = zmB ) takes the form in Theorem 3 and

P(Um
jk

= m | Um
jk−1

= umjk−1
,Zm
B = zmB ) (18)

∝ P(Um
jk

= m | Um
jk−1

= umjk−1
)

[ ∑
u∈{m,f}

βmh−1(u)P(Um
h−1 = u | Um

jk
= m)

]
(19)

where βmh−1(u) is the backward weight defined in Theorem 3.

Figure 9: Graphical representation of Haldane’s hidden Markov model
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C Technical proofs

Proposition 1

Proof. From Assumption 1 we know that, conditional on (Mm
j ,M

f
j , F

m
j , F

f
j ), Zm

j and Zf
j only

depend on Um and U f , respectively, and exogenous mutation events. By (1), Zj = Zm
j + Zf

j given
that S = 1 (fertilization occurs). Finally, by Assumption 4, the meiosis indicators Um and U f are
independent of all confounders (A,Cm, Cf , C). Therefore, the conditional independence statement
immediately follows.
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Figure 10: Haldane’s hidden Markov model embedded in our full causal model
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Theorem 3

Proof. The conditional probability of Um
j can be factorized as

P(Um
j = m | Zm

B = zmB )

∝ P(Um
j = m,Zm

B = zmB )

= P(Zm
h:p = zmh:p | Um

j = m)P(Um
j = m,Zm

1:l = zm1:l)

=

[ ∑
u∈{m,f}

P(Zm
(j+1):p = zm(j+1):p, U

m
h−1 = u | Um

j = m)

][ ∑
u∈{m,f}

P(Um
j = m,Um

l = u,Zm
1:l = zm1:l)

]

=

[ ∑
u∈{m,f}

P(Zm
(j+1):p = zm(j+1):p | U

m
h−1 = u)P(Um

h−1 = u | Um
j = m)

]
[ ∑
u∈{m,f}

P(Um
j = m | Um

l = u)P(Um
l = u,Zm

1:l = zm1:l)

]

=

[ ∑
u∈{m,f}

βmh−1(u)P(Um
h−1 = u | Um

j = m)

][ ∑
u∈{m,f}

P(Um
j = m | Um

l = u)αm
l (u)

]
.
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The forward weight αm
1 (um1 ) for some um1 ∈ {m, f} can be derived as

αm
1 (um1 ) = P(Um

1 = um1 , Z
m
1 = zm1 )

= P(Zm
1 = zm1 | Um

1 = um1 )P(Um
1 = um1 )

= 1
2P(Zm

1 = zm1 | Um
1 = um1 )

where the emission probability is known. A recursive expression for the forward weight αm
j (umj ) for

j = 2, . . . , p can be derived as

αm
j (umj ) = P(Um

j = umj ,Z
m
1:j = zm1:j)

=
∑

u∈{m,f}
P(Um

j = umj , U
m
j−1 = umj−1,Z

m
1:j = zm1:j)

=
∑

u∈{m,f}
P(Zm

j = zmj | Um
j = umj )P(Um

j = umj | Um
j−1 = u)P(Um

j−1 = u,Zm
1:(j−1) = zm1:(j−1))

=
∑

u∈{m,f}
P(Zm

j = zmj | Um
j = umj )P(Um

j = umj | Um
j−1 = u)αm

j−1(u).

The backward weight βmj (umj ) for some umj ∈ {m, f} and j = 1, . . . , p− 1 can be derived as

βmj (umj ) = P(Zm
(j+1):p = zm(j+1):p | U

m
j = umj )

=
∑

u∈{m,f}
P(Zm

(j+1):p = zm(j+1):p, U
m
j+1 = u | Um

j = umj )

=
∑

u∈{m,f}
P(Zm

(j+2):p = zm(j+2):p | U
m
j+1 = u)P(Zm

j+1 = zmj+1 | Um
j+1 = u)P(Um

j+1 = u | Um
j = umj ).

Writing the probability of Um
p shows that βmp (u) = 1 for all u ∈ {m, f}.

Corollary 2

Proof. The proof involves some manipulation of conditional independencies. We simplify the
probability with respect to b1 and omit simplification with respect to b2 for brevity. As with the
proof of Theorem 3 we begin by factorising the conditional probability of Um

j .

P(Um
j = m | Zm

B = zmB ) =
P(Zm

h:p = zmh:p | Um
j = m)P(Um

j = m,Zm
1:l = zm1:l)

P(Zm
B = zmB )

. (20)

Since b1 < j we are concerned with simplifying the second probability in the numerator of
equation (20).

P(Um
j = m,Zm

1:l = zm1:l)

=
∑

u∈{m,f}
P(Um

j = m,Um
b1 = u,Zm

1:l = zm1:l)

=
∑

u∈{m,f}
P(Um

j = m,Zm
(b1+1):l = zm(b1+1):l | U

m
b1 = u)P(Um

b1 = u,Zm
1:b1 = zm1:b1)

= P(Um
j = m,Zm

(b1+1):l = zm(b1+1):l | U
m
b1

= m)P(Um
b1

= m,Zm
1:b1

= zm1:b1)

= P(Um
b1 = m,Zm

1:b1 = zm1:b1)
∑

u∈{m,f}
P(Um

j = m | Um
j−1 = u)P(Um

j−1 = u,Zm
(b1+1):(j−1) =

zm(b1+1):(j−1) | U
m
b1

= m)

= P(Um
b1 = m,Zm

1:b1 = zm1:b1)
∑

u∈{m,f}
P(Um

j = m | Um
j−1 = u)α̃m

j−1(u).
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where

α̃m
b1+1(u

m
b1+1) = P(Zm

b1+1 = zmb1+1 | Um
b1+1 = umb1+1)P(Um

b1+1 = umb1+1 | Um
b1

= m)

α̃m
k (umk ) =

∑
u∈{m,f}

P(Zm
k = zmk | Um

k = umk )P(Um
k = umk | Um

k−1 = u)α̃m
k−1(u),

for k = b1 + 2, . . . , j − 1.

We now factorize the denominator of equation (20).

P(Zm
B = zmB ) = P(Z(b1+1):l = z(b1+1):l,Zh:p = zh:p | Um

b1 = m)P(Um
b1 = m,Z1:b1 = z1:b1).

Substituting these simplified expressions back in equation (20) we obtain

P(Um
j = m | Zm

B = zmB )

=
P(Zm

h:p = zmh:p | Um
j = m)P(Um

b1
= m,Zm

1:b1
= zm1:b1)

∑
u∈{m,f} P(Um

j = m | Um
j−1 = u)α̃m

j−1(u)

P(Z(b1+1):l = z(b1+1):l,Zh:p = zh:p | Um
k = m)P(Um

b1
= m,Z1:b1 = z1:b1)

=
P(Zm

h:p = zmh:p | Um
j = m)

∑
u∈{m,f} P(Um

j = m | Um
j−1 = u)α̃m

j−1(u)

P(Z(b1+1):l = z(b1+1):l,Zh:p = zh:p | Um
b1

= m)
.

(21)
which does not depend on Zm

1:k.
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D Simulation description

Table 7: Description of the simulation variables and parameters

Variable Description of how the variable is constructed Parameters

Mm
i ,M

f
i ,F

m
i ,F

f
i The parental haplotypes are constructed to al-

low linkage disequilibrium in nearby SNPs. For
each parental haplotype we first sample from a
p-variate normal such that Xij ∼ N (0, 1) and
Cov(Xij , Xik) = ρ|j−k|, 0 < ρ < 1, j, k ∈ J .
Thresholds Vij ∼ Unif(a, b) are sampled and the
haplotypes are defined as Mm

ij = I{Xij > Vij}
where I{·} is the indicator function (and similarly
for the other haplotypes).

ρ = 0.75
a = Φ−1(0.6)
b = Φ−1(0.95)

where Φ−1(·) is the
inverse normal CDF.

Cm
i , C

f
i We first define a variable

µ̂mi =
1

p

p∑
j=1

(Mm
ij +Mf

ij).

It follows from our construction of the parental
haplotypes that

µm = E[µ̂m] = 2

(
1− 1

b− a

∫ b

a
Φ(x)dx

)
.

where Φ(·) is the normal CDF. For each individ-
ual i we sample the parental confounder such
that

Cm
i ∼ N (µ̂mi − µm, 1).

We follow an identical procedure for Cf
i .

N/A

Ci We construct the offspring confounder as

Ci ∼ N (0, 1).

N/A
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Zm
i ,Z

f
i We sample the offspring haplotypes using Algo-

rithm 1 in Bates et al. (2020). This algorithm
unconditionally samples a full haplotype Zm

i or
Zf

i according to the hidden Markov model de-
scribed in Appendix B. It depends on the ge-
netic distances r and de novo mutation rate ε.
We sample rj ∼ Unif(c, d) and set rk = ∞
for k = 37, 62, 86, 112 so that the instruments
are unconditionally independent. From these
haplotypes we choose a subset Jg ⊂ J to be
instruments.

ε = 10−8

c = 0
d = 0.75
Jg = {25, 50, 75,
100, 125}

Di The exposure follows a linear structural equation
model

Di = γᵀZi + θmCm
i + θfCf

i + θcCi + νi

where νi ∼ N (0, 0.7). We choose γ so that it
is zero everywhere except for γ24, γ49, γ74, γ99
and γ124 which represent causal variants. The
parameters are chosen so that V ar(Di) = 1.

θm = θf =
√

0.3

θc =
√

0.75

γj =
√

0.1

for j = 24, 49, 74, 99,
124.

Yi The outcome follows a linear structural equation
model

Yi = βDi + δᵀZi + φmCm
i + φfCf

i + φcCi + υi

where υi ∼ N (0, 0.7). We choose δ so that it
is zero everywhere except for δ23, δ27, δ48, δ52,
δ73, δ77, δ98, δ102, δ123 and δ127 which represent
pleiotropic variants. The parameters are chosen
so that V ar(Yi) = 1.

β = 0

φm = φf =
√

0.3

φc =
√

0.75

δj =
√

0.05

for j = 23, 27, 48, 52,
73, 77, 98, 102, 123,
127.

Theorem 1 implies that a sufficient adjustment set for this simulation is

(Mmf
Bg ,F

mf
Bg ,ZB) (22)

where
B = J \ {24, 25, 26, 49, 50, 51, 99, 74, 75, 76, 99, 100, 101, 124, 125, 126}

and
Bg = B ∪ {25, 50, 75, 100, 125}.
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